74 REV Journal on Electronics and Communications, Vol. 7, No. 3—4, July-December, 2017

Regular Article

A Survey on Reconfigurable System-on-Chips

Hung Kiem Nguyen, Thanh-Vu Le-Van, Xuan-Tu Tran

VNU Key Laboratory for Smart Integrated Systems (SISLAB), University of Engineering and Technology
(VNU-UET), Vietnam National University, Hanoi (VNU), Vietnam

Correspondence: Hung Kiem Nguyen, kiemhung@vnu.edu.vn

Communication: received 21 November 2016, revised 21 August 2017, accepted 27 September 2017

Online publication: 7 March 2018, Digital Object Identifier: 10.21553 /rev-jec.147

The associate editor coordinating the review of this article and recommending it for publication was Dr. Bui Trong Tu.

Abstract- The requirements for high performance and low power consumption are becoming more and more inevitable
when designing modern embedded systems, especially for the next generation of multi-mode multimedia or communication
standards. Ultra large-scale integration reconfigurable System-on-Chips (SoCs) have been proposed to achieve not only
better performance and lower energy consumption but also higher flexibility and versatility in comparison with the
conventional architectures. The unique characteristic of such systems is the integration of many types of heterogeneous
reconfigurable processing fabrics based on a Network-on-Chip. This paper analyzes and emphasizes the key research
trends of reconfigurable System-on-Chips (SoCs). Firstly, the emerging hardware architecture of SoCs is highlighted.
Afterwards, the key issues of designing reconfigurable SoCs are discussed, with the focus on the challenges when designing
reconfigurable hardware fabrics and reconfigurable Network-on-Chips. Finally, some state-of-the-art reconfigurable SoCs are
briefly discussed.

Keywords— Reconfigurable computing, Reconfigurable NoC, Network-on-Chip, System-on-Chip, reconfigurable processing

fabrics.

1 INTRODUCTION

Emerging System-on-Chips (SoCs), especially those for
mobile systems, are typically battery-powered systems
and have to support a wide range of applications
such as multimedia processing or communication base-
band processing. The high performance and low power
consumption are becoming more and more inevitable
requirements when designing such devices, especially
for next generation multi-mode multimedia or commu-
nication standards. New chip architectures should be
able to simultaneously support multiple applications
with a high performance, while maintaining low power
consumption, low area, low non-recurring engineering
(NRE) cost, and shorter time-to-market, as well as offer
the capability of hardware updating after systems have
been deployed. In addition, these architectures should
be able to resolve the appearance of defects or faults in
the system in order to guarantee the correct operation
of the system.

Reconfigurable systems-on-chips were proposed to
meet the above requirements [1]. Such systems usually
consist of several types of processing elements, such
as software-programmable processors, application-
specific IP cores, and especially reconfigurable process-
ing fabrics. For connecting components of the system
together, reconfigurable Network-on-chips (NoCs) [2, 3]
have been proposed to achieve not only better perfor-
mance and lower energy consumption but also higher
flexibility in comparison with conventional on-chip
bus architectures. Two key components that makes
reconfigurability of a reconfigurable system are the re-

configurable processing fabrics and the reconfigurable
NoC. The reconfigurable processing fabrics are orga-
nized into arrays of reconfigurable processing units
(RPU) which is useful for implementing computation-
intensive functions. The reconfigurable NoC is the
on-chip interconnection fabric that can autonomously
adapt their structure and behavior to various contexts
at runtime. Reconfigurability allows the prefabricated
integrated circuit of these components to physically
alter the location or functionality of its infrastructure
to become more than one kind of digital circuit. Re-
configuration can be carried out at either run-time (i.e.
dynamic reconfiguration) or compile-time (i.e. static re-
configuration) [4]. Static reconfiguration is the common
way for implementing applications with FPGA (Field-
programmable Gate Arrays)-like reconfigurable logic
fabric. Dynamic reconfiguration uses a schedule that
can re-allocate hardware resources to various tasks or
applications at runtime. Thanks to many functions are
accelerated by being performed on the highly opti-
mized processing and communication hardware fabrics
during the operation of the system, the system’s perfor-
mance is increased. Moreover, the system’s flexibility
is also maintained while its functional density (i.e.
number of applications mapped onto an area unit) is
increased.

The reconfigurable SoC is a very wide topic having
various other sub-domains, such as coarse-grained re-
configurable fabrics (e.g. [5-7] and [8]), reconfigurable
on-chip communication fabrics (e.g. [9, 10] and [11]),
fault tolerance design (e.g. [12, 13] and [14]), design
methodologies ([15, 16] and [17]), operation systems,

1859-378X-2017-3403 (© 2017 REV

H. K. Nguyen et al.: A Survey on Reconfigurable System-on-Chips 75

programming models [18], mapping methods ([19-21])
and simulators, etc. However, this survey does not
encompass any one of the mentioned domains because
most of them already have been discussed in detail in
the various past studies. The goal of this paper is to pro-
vide an interdisciplinary introduction to reconfigurable
system-on-chips. The focus is on breadth to provide a
unified view of this topic. The paper begins with an
overview of the evolution of the system-on-chips. An
introduction to the emerging architecture of reconfig-
urable SoCs is presented next, which is followed by a
description of their two key components: reconfigurable
processing fabric and reconfigurable NoC. Trends and
future research directions in reconfigurable SoCs are
also discussed. The paper is finished by listing various
the state-of-the-art reconfigurable SoCs. The rest of the
paper is organized as follows. The evolution of System-
on-Chips is presented in Section 2. In Section 3, the
emerging architecture of reconfigurable SoCs is intro-
duced. Section 4 and Section 5 give the survey of recon-
figurable processing fabrics and reconfigurable NoCs.
Some state-of-the-art proposals for reconfigurable SoCs
are described in Section 6. Finally, some conclusions are
drawn in Section 7.

2 EVOLUTION OF SYSTEM-ON-CHIPS

Early SoCs often include only one processor in their
structure. Unfortunately, a single processor no longer
deals with the requirements of the applications those
demand more and more parallelism and real-time con-
straints. To tackle that challenge, the modern embedded
system is now designed with many processors together
with other heterogeneous components integrated in a
chip called Multiprocessor System-on-Chip (MPSoC).
Generally, MPSoCs offer a significantly better
performance-to-cost ratio than those uniprocessor sys-
tems do. The basic reason is that the cost of processing
element is a nonlinear function of performance [22].
The cost of a processor increases greatly as the clock
frequency increases. On the other hand, the clock rate
of the processor cannot be increased infinitely due to
the reason of power efficiency and physical limitations.
Therefore, partitioning the application so that it can be
executed on several smaller processors in a parallel or
pipelining fashion is more efficient. Moreover, using
multiple processors can also make it possible to deal
with real-time performance. It is often much easier
to meet deadlines when those time-critical processes
are mapped onto separate processors. Some research
also shows that multiprocessors help to reduce power
consumption. The reason is that several processors
running at slow clock rates consume less power than
a single large processor running at very high clock
frequency [23]. However, the barrier to the develop-
ment of MPSoCs is the on-chip communication. Strictly
speaking, the on-chip communication nowadays de-
fines the performance of MPSoCs [24]. Because of the
limitations of bus-based architectures, bus-based SoCs
cannot provide enough processing performance to keep

up with this new technology trends. The Network-on-
Chip paradigm [3] was proposed and considered as
an outstanding alternative for the bus-based architec-
ture. NoC architectures provide a higher communica-
tion performance and therefore it is a promising solu-
tion for integrating a large number of IP (Intellectual
Property) cores for implementing SoCs with over one
billion transistors in the future. NoCs have inherited
the latest technologies of bus architectures in terms of
advanced protocols and topology. Moreover, by adapt-
ing packet-based communication mechanism to the on-
chip domain, NoCs can deal with many critical issues
related to the interconnection fabric design. A NoC-
based System-on-Chip is viewed as a micro-network of
on chip components and must satisfy constraints on
the implementation cost (i.e. power consumption, area,
and efficient usage of resources) and quality-of-service
(QoS) (i.e. reliability, throughput, and latency) under
the conditions of intrinsically unreliable on-chip signal
transmission.

On the other hand, the emerging embedded systems
are often not only designed specifically for one applica-
tion, but also designed to support multiple applications
on the same hardware platform. In the other words,
we desire that a System-on-Chip platform can be used
in a wide range of different applications. Such sharing
resources among several applications makes the system
cheaper and more versatile. Besides high performance,
low power consumption and cost, it also needs flexibil-
ity to easily upgrade without replacing the system.

Figure 1 depicts several architectures with their vari-
ability in terms of flexibility, power efficiency and per-
formance. The instruction-driven processors are very
flexible and usually targets at the applications at where
flexibility has a higher priority than implementation
efficiency. Typical representatives of processors include
general-purpose processors (GPP), digital signal pro-
cessors (DSP), application specific instruction-set pro-
cessor (ASIP), and embedded processors, etc. GPPs
aim at the general-purpose applications, so they nor-
mally offer a very high flexibility at the expense of
low performance, high power consumption, and high
cost. Consequently, GPPs are unsuitable for embedded
systems. ASIPs, DSPs, and embedded processors are
an intermediate solution between GPPs and ASICs that
target at a specific application domain. Therefore, the
implementation of these processors focuses on power
efficiency and high performance with good flexibility.
To enhance the computing performance while reducing
power consumption, many improvements in the execu-
tion model for the processors have been proposed such
as superscalar, VLIW (Very Long Instruction Word),
SIMD (Single Instruction - Multiple Data), MIMD (Mul-
tiple Instruction - Multiple Data), etc. The processors
also have constantly been advanced either their op-
erating frequency or the number of integrated cores.
However, basically these processors still cannot solve
the root problems in the instruction-driven execution
method. In contrast, the dataflow-driven processing
method of the ASICs (Application-Specific Integrated
Circuits) usually offers the optimized performance and

76 REV Journal on Electronics and Communications, Vol. 7, No. 3—4, July-December, 2017

Computing
Architectures

‘///V\

Instruction-driven Reconfigurable ASICs
Architectures Architectures
GPPs DSPs ASIPs FPGAs CGRAs
Y \
Multicore VLIW Hybrid Reconfigurable SoCs
Superscalar

Performance and power consumption

Y

Flexibility

A

Figure 1. Comparison between computing architectures.

power consumption. However, the drawback of the
ASICs is low flexibility. Moreover, the high price for de-
signing and manufacturing the chip masks is becoming
increasingly an important factor that limits the applica-
tion scope of the ASICs. These all are becoming a very
large barrier to the development of dataflow-driven
architectures in the future. Field Programmable Gate
Arrays (FPGAs) are more flexible platforms due to their
reconfigurable possibilities, but are slower in compari-
son with the ASICs. In addition, the FPGAs consume
a vast amount of energy for routing resources making
them unsuitable for mobile devices. Unlike the FPGAs,
Coarse-Grained Reconfigurable Arrays (CGRAs) often
have a good balance between implementation efficiency
and flexibility. However, the CGRA does not support
bit-level computation and control-intensive function
due to its coarse granularity.

Recently, the research trend has shifted toward the
hybrid reconfigurable System-on-Chips that integrate
all of the above architectures into a single system
(e.g. [5, 6] and [7]). By mapping the kernel functions
of an application onto the reconfigurable fabrics, these
systems can achieve high performance approximately
equivalent to that of ASIC while maintaining a degree
of flexibility close to that of DSP processors (e.g. [5,
6, 25-27] and [7]). The tasks performed by the re-
configurable hardware are usually known as hardware
tasks. By dynamically reconfiguring, these systems al-
low many hardware tasks to be mapped onto the same
hardware platform, thus reducing the area and power
consumption of the design [4]. In a dynamically re-
configurable system, the sequence of computation and
configuration is just determined and handled at run-
time. Run-time reconfiguration is a complex process
that must deal with side-effect factors such as resource
management and synchronization between the placed
tasks. This process is done by the scheduler that may be
implemented either as a part of the software running

on the processor (e.g. [28]) or as a dedicated hardware
(e.g. [29]). The scheduler is in charge of managing the
tasks and deciding when a task will be executed. The
scheduler then tries to place the task on the reconfig-
urable architecture by downloading from the config-
uration memory a set of corresponding configuration
bits, so-called configuration context. The configuration
context determines the functionality of resources on
the reconfigurable hardware for executing the given
task. Besides, since the same SoC platform is to be
used for several applications that have very different
requirements, the on-chip communication infrastruc-
ture must be very flexible to support a wide range of
bandwidth and Quality-of-Service (QoS) requirements.
Currently, such flexibility can be provided by a large
packet-switched NoC with an over-engineered total
bandwidth. Unfortunately, such a NoC would result in
a significant area overhead because only a fraction of
its bandwidth is really utilized for a given application
([17, 30, 31]). Another way is the reconfigurable NoC
that enhanced the dynamical reconfigurability of the
SoC platform; therefore, this also results in the further
reduction in area and power consumption of the design
([17, 30)).

Several design methodologies have been proposed
to deal with the hybrid reconfigurable SoCs and can
be classified into two main categories: compile-time
methodologies and run-time methodologies. Compile-
time methodologies (e.g. [32, 33]) are generally aimed
at designing the SoCs whose configuration contexts are
generated by a cross-compiler and must be downloaded
into the system after right power-on. Unfortunately,
such SoCs are not flexible enough to support dynamic
environments where the system’s characteristics and
behavior need to adapt strongly to various contexts at
runtime. Recently, researchers have been paying a lot
of attention to the development of run-time method-
ologies for self-aware reconfigurable SoCs (e.g. [7, 10]

H. K. Nguyen et al.: A Survey on Reconfigurable System-on-Chips 77

and [11]). These methodologies focus on the techniques
that allow SoCs to monitor its own state as well as
external environment and then autonomously adapt
their structure and behavior during the period of their
operation. The elements of the SoC that can be config-
ured at run-time include both computation fabrics and
interconnection fabrics.

3 ARCHITECTURE OF RECONFIGURABLE S0Cs

A reconfigurable SoC for modern embedded systems
are usually integrated many heterogeneous processing
resources such as software programmable processors,
hardwired IP cores, reconfigurable infrastructure, etc.
based on a flexible communication infrastructure.
Generally, such a system usually includes:

o Computation Resources provide the data pro-
cessing and storage functionality. The computa-
tion resources can be either heterogeneous or ho-
mogeneous. However, according to International
Technology Roadmap for Semiconductors (ITRS)
report [34], heterogeneous integration will be the
dominated trend in the future. The computation
resource comprises of:

— Instruction-driven processors such as GPPs,
DSPs, ASIPs, etc.

- Reconfigurable processing fabrics that are usu-
ally arrays of the repeated logic cells. These
logic cells vary in complexity from very small
and simple structures as the look-up tables
in FPGAs to more complex ones as ALUs in
CGRAs.

- Fixed functional accelerators such as H.264
encoder, MP3 decoder, etc.

— Memory subsystem includes storage units and
direct memory access controllers.

o Communication infrastructure provides the com-
munication medium between the computation re-
sources. Most of existing reconfigurable SoCs
(e.g. [5, 32, 33, 35] and [29]) are based on shared-
bus or crossbar interconnection infrastructures.
However, some NoC-based reconfigurable SoCs
(e.g. [6] and [7]) are also emerged. While on-
chip integration is more and more increasing, the
Network-on-Chip will be the most dominated com-
munication paradigm for Ultra Large-Scale Inte-
gration SoCs in future [34]. The communication
among the cores on the NoC is carried out by
sending the packets on a path composed of routers
and inter-router links. The communication infras-
tructure in a NoC architecture comprises of:

— Routers (or Switches) which direct the data
according to the selected protocol,

— Network adapter/interface (NI) which pro-
vides a bridge between the routers and the
processing elements attached to them. Its
main function is to separate computation part
(e.g. PEs) from the communication part (e.g.
routers),

User Application
(in source code)

!

Profile

@@ s —— l

‘ MEMORY |IW| “ N H Partition
R R R Find the most optimized
(_:))\ Map
[[T=Te]) [MEmoRY]

Generate configuration
contexts

MEM()RY [EEECEN] [EEGHAN] Configure NoC
MEMORY MEMORV

(b) Flowchart of the
management program

(a) Top-level architecture

Figure 2. A typical NoC-based SoC.

- Links which are physical channels for transfer-
ring data between network routers,

— Topology is the paradigm in which network
routers are organized and connected together.

e Management mechanism includes strategies for:

— Data-flow and Context-flow control;

— Dynamically reconfiguring NoC (e.g. plac-
ing, routing, and scheduling applications) on-
demand at run-time.

e Mapping Method answers the question how to
find an optimal map for an application onto the
SoC platform.

To program such a system, an application is first
represented intermediately as a series of tasks that
depends on each other by Control and Data Flow Graph
(CDEFG) [36], and then partitioned and mapped onto the
heterogeneous computational and routing resources.
Especially, computation-intensive kernel functions of
the application are mapped onto the reconfigurable
hardware so that they can achieve high performance
like that achieved when implementing these functions
by a dedicated hardware. By dynamically reconfig-
uring, reconfigurable computing systems allow many
hardware tasks to be mapped onto the same hardware
platform. Moreover, reconfigurability also helps to re-
solve the appearance of defects/faults in the system in
order to guarantee the correct operation of the system.

Figure 2 (a) depicts a typical reconfigurable NoC-
based system in which each network node is a cluster of
router, NI, and precessing element (e.g. IP core, mem-
ory, FPGA, CGRA). In this model, one general-purpose
microprocessor plays the role of Central Managing Unit
(CMU). The CMU is responsible for managing and con-
trolling the operation of programmable/reconfigurable
infrastructure on the NoC. The CMU performs the
feasibility analysis, spatial mapping, temporal schedul-
ing, generating configuration contexts and configuring
the NoC before performing an application. However,

78 REV Journal on Electronics and Communications, Vol. 7, No. 3—4, July-December, 2017

the CMU does not handle run-time scheduling for
individual processes and communications in each node
during execution. That is performed by the individual
nodes and network routers. In other words, the NoC
has two operation modes, reconfiguration and self-
reconfiguration. The NoC is initialized in reconfigura-
tion mode by the CMU. After that, NoC operates in self-
reconfiguration mode that enables the NoC to adapt
itself to the dynamically environment in real-time.

Figure 2 (b) shows the execution flow of the manage-
ment program on the CMU. Firstly, the user application
is fully executed on the CMU, and is profiled to esti-
mate the computation complexity and memory access
bandwidth of the application. Based on instruction pro-
filing, the application is partitioned into several tasks
that are suitable to available computational resources of
the NoC. Next, the CMU performs run-time scheduling
and maps these tasks and inter-tasks communication
of the application to suitable processing elements and
network links, respectively. It also tries to find the
best configuration that is optimized in terms of either
resources utilization or energy consumption or QoS,
by using the optimization algorithms such as Particle
Swarm Optimization (PSO), Evolution Algorithm (EA),
Genetic Algorithm (GA), etc. Finally, the CMU gener-
ates configuration contexts and downloads them into
the NoC.

Developing products and applications using recon-
figurable NoC-based architectures usually offers many
opportunities and challenges. The reconfigurable SoC
exposed tremendous potential for enhancing the com-
puting performance. Recently, the reconfigurable SoC
has begun to be applied in some areas of high per-
formance computing such as structural analysis, fluid
dynamics, molecular modeling, bioinformatics, chem-
istry, geological and seismic hazards investigation, me-
teorology, cosmology, etc. However, there still exist
many technical problems that must to be solved so
that the reconfigurable SoC can be used popularly as
GPP processors. In order to efficiently exploit such a
reconfigurable computing system, many tools will be
required for developing NoC architectures and recon-
figurable architectures, as well as for mapping and
scheduling of tasks into NoCs.

Reconfigurable architecture is often organized into
arrays of configurable logic cells. This enables reconfig-
urable hardware to achieve excellent performance when
implementing computation-intensive tasks, but rela-
tively low performance when implementing control-
intensive tasks. Consequently, to some extent, this limits
the scope of applications of the reconfigurable hard-
ware. New architectures should solve the problem in
order to improve the performance when performing
control-intensive tasks.

Mapping and scheduling tasks into NoCs must deal
with many aspects of parallel computing and all its
associated techniques such as computation and data
partitioning, inter-process synchronization, interrupt
management, and code generation, etc. (e.g. [19, 20,
37]). In the processor-based system, interrupt-driven
mechanism is an effective method to communicate with

peripherals. When an interrupt occurs, CPU (Central
Processing Unit) has to save the context of the executing
program on the stacks so that the CPU can return to
the program that was interrupted. Unfortunately, this
method is not suitable for reconfigurable processing
systems because there are a lot of data, status infor-
mation and configuration information that need to be
stored and restored. Store all intermediate results and
status can lead to huge time overhead and storage
overhead. Therefore, the requirement on a new inter-
rupt processing mechanism is inevitable when develop-
ing reconfigurable systems. Besides, reconfigurable sys-
tems also require the support of the operating system.
Because the operating mechanism and the executing
model of the reconfigurable hardware are not similar
to the traditional processors, mechanism for memory
management, tasks scheduling, thread/process man-
agement are all new problems must be solved.

Applying reconfigurable techniques to general-
purpose computer is suitable with the development
trend of computer structure, as well as with the tech-
nology trend in the integrated circuit design. This will
be one of key trends of the new generation computer
in the future. There are five main research issues in
the field of reconfigurable SoCs design: (i) Method-
ology for designing reconfigurable SoCs (e.g. [15, 38]
and [16]); (ii) Reconfigurable resource modeling and
real-time operation system for the reconfigurable hard-
ware (e.g. [28] and [39]); (iii) On-chip communication
fabrics for reconfigurable SoC (e.g. [12-14, 30, 31, 40-64]
and [65]); (iv) Fine-, and coarse-grained reconfigurable
fabrics (e.g. [5, 6, 25-27, 32, 33, 35, 66—-68] and [29]); and
(v) Mapping method for reconfigurable architectures
(e.g. [5, 36] and [69]).

Next sections will focus on survey and vision of on-
chip communication fabrics, coarse-grained reconfig-
urable fabrics.

4 RECONFIGURABLE PROCESSING FARBICS

The reconfigurable hardware architecture is generally
classified into fine-grained reconfigurable architecture
such as the Field Programmable Gate Array (FPGA)
and coarse-grained dynamically reconfigurable archi-
tecture (CGRA). Some reconfigurable computing sys-
tems use a standard FPGA as a reconfigurable fabric
(e.g. Zyng-7000 [32], Arria 10 [33], Warp [29] etc.),
some adopt CGRA (e.g. MorphoSys [66], PACT XPP-
III [67], ADRES [35], and REMUS [68] etc.), while others
incorporate both (e.g. MORPHEUS [6] and [7]).
FPGAs support the fine-grained reconfigurable fab-
ric that can operate and be configured at bit-level.
FPGAs are extremely flexible due to their higher re-
configurable capability. However, the FPGAs consume
more power and have more delay and area overhead
due to greater quantity of routing required per con-
figuration [1, 38]. This limits the capability to apply
FPGA to mobile devices. CGRAs were proposed to
overcome the limitation of conventional microproces-
sors and fine-grained reconfigurable devices in certain

H. K. Nguyen et al.: A Survey on Reconfigurable System-on-Chips 79

—)l Input DMA Controller

PEA JL

Data
Memory

Context +|Configuration
Memory Y] Controller

Cm‘ssbar Switch)
v
PE PE PE
.......

—PI Output DMA Controller I:f/

Figure 3. Basic architecture of reconfigurable hardware.

application domains such as multimedia and communi-
cation baseband processing [38]. In contrast to FPGAs,
CGRAs aim at reconfiguring and manipulating on data
at word-level. The CGRA can be a domain-specific
system (e.g. ADRES [35], and REMUS [68] etc.) or an
application-specific system (e.g. [70, 71]). The CGRA is
proposed to exploit high Data-Level Parallelism (DLP),
Instruction-Level Parallelism (ILP) and Task-Level Par-
allelism (TLP) of the computation-intensive loops of
an application. The CGRA also supports the capability
of dynamic reconfiguration by enabling the hardware
fabrics to be reconfigured into different functions even
while the system is running. By dynamically recon-
figuring the hardware, many different functions are
mapped to the same hardware structure, thus leading
to a reduction in size, cost and power consumption
of the system. Consequently, high flexibility and per-
formance, and low power consumption of the CGRA
make itself ideal to satisfy the design requirements of
multimedia processing applications.

The generic architecture of the reconfigurable hard-
ware is composed of Processing Element Array (PEA),
input/output DMA controllers, Context Memory, Data
Memory, and Configuration Controller as shown in
Figure 3.

Configuration controller takes charge of fetching a re-
configuration context from the Context Memory, and
then decoding context to configuration information that
establishes the function of reconfigurable fabrics. The
time needed to configure the reconfigurable fabrics is
called configuration time. Minimizing the configuration
time is the main objective when designing context
parser. Some techniques such as compressing context,
parallelizing operation of context parser with execution
of PEA, etc., can help to shorten the configuration time
overhead.

PEA is often organized into a regular array of config-
urable blocks that can be either configurable logic cells
(e.g. Look-up tables in FPGAs) or configurable pro-
cessing elements (e.g. PACT XPP-III [67], REMUS [68]
etc.). Configurable blocks are connected together by the
configurable routing network that is based on either
circuit-switching technique or packet-switching tech-
nique. The important parameters of one PEA include
topology, granularity of PE (e.g. 4-bit, 8-bit, or 16-

bit), homogeneous or heterogeneous PEs, configuration
depth, and execution model, etc.

Memory is a key component in any processing system.
The organization and capacity of memory directly af-
fect the performance, power consumption and chip area
of the target system. Especially for the computation-
intensive tasks, which needs to perform a large number
of computing in parallel, memory access throughput
always become the bottleneck of the system. The cen-
tralized memory based on the traditional bus basically
cannot satisfy the requirements on the data access
bandwidth of the reconfigurable computing systems. A
NoC-based distributed memory, which enables many
PEs to perform simultaneously reading/writing ac-
cesses, is an outstanding solution for this problem.
Adaptive bandwidth, memory subsystem architecture,
memory access mechanisms are key issues when de-
signing distributed on-chip memory.

The difference between a CGRA and a multi-core
processor is that each core of multi-core processor is
a complete processor including both control path and
data path. In contrast, each PE of the CGRA only
contains data path, and whole PEA is equipped one
common control path. This helps to decrease the over-
head for implementing the control path. The CGRA op-
eration is driven by configuration contexts that keep the
role like instructions of the processor. The context spec-
ifies particular operation of the PEA (i.e. operation of
each Reconfigurable Cell (RC), interconnection between
RCs, input source, output location, etc.) as well as the
control parameters that control operation of the PEA.
Similar to an instruction cycle of the processor, a context
cycle is also composed of at least three phases includ-
ing context fetching, context decoding, and executing.
However, the difference is the CGRA just needs to be
configured one time for executing multiple cycles. Once
configured, CGRA operates as the hardware dedicated
for the defined computation. The CGRA is just recon-
figured when a different computation demand, which
is equivalent to another context, appears. By contrast,
the processor always has to perform all phases of an
instruction cycle for every instruction even if the opcode
of instructions does not change. In consequence, the
CGRA performance is higher than that of the processor
because the overhead time for performing two phases
fetching and decoding is decreased.

5 RECONFIGURABLE NETWORK-ON-CHIPS

5.1 Design Methodologies

The on-chip communication nowadays defines the
performance of a MPSoC [24]. The on-chip communica-
tion medium should aim to provide high throughput,
low latency, scalability, low power consumption, en-
sured QoS, reduced contention and less occupied area,
etc. NoC paradigm has been proposed for SoCs design
to meet the above requirements. Several design method-
ologies have been proposed to deal with NoCs and
can be classified into two main categories, including
design-time methodologies and run-time methodolo-

80 REV Journal on Electronics and Communications, Vol. 7, No. 3—4, July-December, 2017

gies. Design-time methodologies (e.g. [12, 44], and [14])
are generally aimed at designing the NoC for a specific
application. In other words, NoC is designed to func-
tion as the communication infrastructure in an ASIC
or an application-specific SoC. Requirements of these
designs are usually high throughput and low power.
Therefore, all parameters, such as the on-chip inter-
connection architecture (i.e., topology, links), routing
technique, switching schemes, and PE architecture etc.,
are defined at design time so that they are best opti-
mized with the application. However, NoC should be
scalable and adaptive to support various applications
by selecting the most suitable parameters according to
the requirements of the current application. Another
problem is that the more and more complexity of
SoCs makes them become very sensitive to permanent,
transient, or intermittent faults [61]. These faults result
in errors when passing data packet on the NoC, which
affects the reliability of the SoC. To ensure the reliability
of the system, these faults have to be detected by
specific error detection blocks. Moreover, it is necessary
to distinguish a permanent fault and a transient fault.
If an error caused by a transient fault, the data can
simply be retrieved by correcting or retransmitting.
But if an error is caused by a permanent fault, this
fault must be positioned, and then bypassed by either
some adaptive control mechanisms or spare units. In
this case, the failed elements must first be isolated
from the communication system. Next, an adaptive
routing algorithm allows packets to be re-routed in
order to avoid faulty area. As a result, fault-tolerant
router design (such as [12, 13], and [14]) is necessary to
allow the system to continue operating in the presence
of unexpected faults.

Unfortunately, the application-specific NoCs are not
flexible enough to support dynamic environments
where communication characteristics need to adapt
strongly to various contexts at runtime. Recently, re-
searchers have been paying a lot of attention to the
development of run-time methodologies for reconfig-
urable NoCs. These methodologies focus on the tech-
niques that allow NoCs to autonomously adapt its
structure and their behavior during the period of their
operation. Therefore, these NoCs can function as a com-
munication infrastructure in reconfigurable SoC. These
SoCs are often oriented to a certain application-domain
instead of a specific application and therefore they need
the reconfigurability of almost parts of the system. By
this way, it is able to improve the flexibility of the design
after fabricating. The parameters/elements of NoC that
can be modified at run-time include reconfigurable
topology (e.g. [50, 59], and [52]), reconfigurable links
(e.g. Direction/Bandwidth of links [43]), reconfigurable
PEs, and reconfigurable router (e.g. [45], and [55]). For
example, a reconfigurable router can support adap-
tive routing techniques, adaptive switching techniques,
adaptive number of VCs (virtual channels) and the
buffer size per each VC etc, so that they can be
dynamically adjusted based on the traffic load and
network status.

Reconfiguration techniques allowing NoCs to meet

the above requirement are as follows:

o Low area and power consumption: NoC is just the
communication part in a SoC, therefore, its design
must be simple enough so that area and power
overhead resulted from the NoC is not too large
compared with total area of the entire SoC. The
resource is efficiently used by dynamically recon-
figuring the NoC according to the requirements
of user and/or system. For example, the links
between two any nodes are often unidirectional
channels for transmitting or receiving. If direction
of channel is reconfigurable, it has potential to effi-
ciently use of links, as well as increase bandwidth
of links.

« High performance (including low latency and high
throughput): Bandwidth requirement of the on-
chip communication can vary depending on the
user application, thus network with fixed com-
munication parameters is not the optimal solution
in terms of data throughput (and power). By dy-
namically changing link’s direction or switching
strategy so on, it has potential to improve the
performance of the NoC.

e QoS (e.g. guaranteed-throughput, best-effort): im-
plies reliably transferred data, reduced packet
loss, etc. From this perspective, NoC architectures
should be reconfigurable, for example, by rerout-
ing at runtime traffic flow from congested area; or
NoC elements must be able to change the routing
path at runtime in order to efficiently avoid the
faulty areas.

e Scalability: adding/removing a node is able to
increase/decrease power consumption and latency.
Reconfigurable technology is solution for this prob-
lem.

o Reduced contention (e.g. deadlock, live-lock, etc.):
adaptive routing and flow control can help to
reduce contention in the NoC.

5.2 Reconfigurable Parameters of NoC

The objective of NoC-based SoCs design is to
find NoC instances that get the best trade-off be-
tween the cost criteria (e.g. area, power) and perfor-
mance criteria (e.g. latency, throughput, and reliability).
Pratomo et al. [57] had built scenarios for evaluating the
impact of NoC parameters (e.g. packet rate, packet size,
buffer size, routing algorithm) on the performance of
SoC. Liu et al. [31] drew a comparison between circuit
switched NoC and Packet Switched NoC. In real-life
applications, almost most of parameters (i.e. commu-
nication load, buffer size, routing algorithm, switching
diagram, packet rate, and topology, etc.) are determined
in the NoC router. Thus, efficient and high-performance
routers represent a critical issue when designing NoC.
In reconfigurable SoC, reconfigurable router is needed
to adapt to the immediate status of network so that the
performance is not degraded. For example, in situation
of faulty network, the reconfigurable router can adapt
the NoC to the other operation mode by adjusting
the topology, packet size and packet rate, or change

H. K. Nguyen et al.: A Survey on Reconfigurable System-on-Chips 81

In status| Out status
> Parameterized Controller »
h Y

veu T T

vee 1T 1]

Configurable Buffer pref-(C on figurah le Crosshar
HFEEE A EE R E

Configurable VO Driver

Figure 4. Block diagram of a reconfigurable router.

the type of its routing algorithm. Figure 4 shows a
typically architecture of the reconfigurable router that
includes four main blocks: parameterized controller,
configurable buffer, configurable crossbar, and config-
urable I/O driver. It is popular that each router consists
of four I/O (Input/Output) channels for connecting
to four neighbour routers and another channel for
connecting to a processing element. The I/O channels
are connected to physical links via the configurable
driver that can establish direction and bandwidth of
links assigned to each channel. The configurable buffer
is composed of an array of registers or storage elements
that can be flexibly organized into several VC with
variable size depending on applications. The crossbar
is responsible for physically transfer data from the
input channel to the output channel. Routing path
and switching diagram of the crossbar is able to be
configured at run-time. The controller takes charge
of monitoring and controlling operation of the other
modules, for example allocating VC and switch to input
data packet. Depending on the information received via
the input status port, the controller makes decision on
routing path or switching diagram in order to adapt
the router to dynamic status of the NoC.

Many research efforts are spent for proposing re-
configurable router. The authors in [42, 59] proposed
the router that can be configured with different num-
ber of local and communication ports to build multi-
dimensional networks (i.e., 2D and 3D) with different
topologies and number of nodes. Similarly, a physical
circuit-switching router, which is used to alter the topol-
ogy of the NoC depending on the application mapped
onto the SoC, also is publicized by Stensgaard [50] and
Modarressi [52]. Ahmad et al. [40] proposed a router
that can dynamically change the switching diagram
between circuit switching technique and packet switch-
ing technique depends on the required bandwidth.
Nguyen et al. [10] proposed a hybrid switching router
based on the combination of wormhole and virtual cut-

through switching schemes. The router is dynamically
reconfigurable to exchange between switching schemes
at run-time, therefore, it achieves higher average per-
formance than wormhole switching, while reducing the
implementation cost in comparison with the virtual cut-
through switching. Wolkotte et al. in [56] proposed a
circuit-switched router with the physical link that is
partitioned into multi-lanes. The purpose of lanes is
similar to that of virtual channels in packet-switched
router. Al Faruque et al. [43] presented a novel con-
figurable link which can change its supported band-
width on-demand at run-time for the adaptive on-chip
communication architecture. In [55], Nicopoulos et al.
introduced a novel unified buffer structure, called the
dynamic Virtual Channel Regulator (ViChaR), which
dynamically can allocate VC and buffer resources ac-
cording to the network traffic conditions. Therefore,
ViChaR can maximize throughput by dispensing a
variable number of VCs on demand. The authors also
implemented a cycle-accurate simulator for the pro-
posed NoC. Al Faruque et al. [43] proposed novel adap-
tive routing algorithm (called weight-XY) and adaptive
buffer allocation scheme. The proposed adaptive buffer
allocation scheme can re-assign a certain number of
buffer blocks to different virtual channel for each of
output ports of a router on-demand. Also related to the
buffer organization, Huang et al. [45] proposed an out-
put buffer that is based on shared memory. The shared
memory is partitioned into sections that correspond to
available output ports. Depending on the payload on
each output port, an overload buffer can borrow some
memory locations from an underload buffer at run-
time. Meanwhile, some works focused on researching
and proposing new routing algorithms such as buffer-
less routing algorithm by Lin et al. [48], fault-tolerant
adaptive routing algorithm by Pratomo et al. [57],
Valinataj et al. [63], and Kumaran et al. [65]. Besides,
some interested topics on Reconfigurable Network-
on-Chip have been recently emerging, including self-
reconfiguration and self-optimization of NoCs pro-
posed by Bakhouya et al. [53], Killian et al. [46],
Neishaburi et al. [13], or ideas for applying bio-
inspired techniques to reconfigurable NoCs by Moad-
eli et al. [49], Mishra et al. [51], and Bakhouya et al. [53].

5.3 Simulators

NoC proposals need to be validated by software
simulators or hardware emulators before its imple-
mentation. These tools are used either to evaluate
the characteristics, functions, power consumption and
performances of the NoC design (e.g. [54, 60]), or to
explore design space of reconfigurable NoCs (e.g. [30,
41, 62, 64]). Although simulator is slow and the results
can be different from reality due to the use of models,
but simulator is the cheapest way to validate the design.
In contrast, emulator is faster and the results can be
close to reality due to the use of physical hardware
platform (e.g. FPGA). Generally, NoC simulator can
be classified into high-level and low-level environment
depending on the abstraction where the simulator is

82 REV Journal on Electronics and Communications, Vol. 7, No. 3—4, July-December, 2017

DMEM
 VIWView v Y
i | Global PRF 3
! ‘ Global DRF
[T T |
_4 FU —» FU —» FU —» FU +— §
T S I gl S e s A s il A . -
: ey
§ — FU » FU » FU » FU
E RF RF RF RF
] L e
& ™ I NENEAL] Fve || Leed
"g ru | L Fu | L] wu | L] FU
o RF RF RF RF
!]
V AL yvy 4y
FU > FU > FU > FU
. RF RF RF RF
CGA View

Figure 5. ADRES architecture template [35].

modeled. High-level simulators are modeled at the
behavioral and architectural levels thereby they are
useful only in evaluating the functional correctness of
a NoC proposal. By contrast, low-level simulators are
required when the purpose of simulation is to aim at
evaluating the performance or power consumption of
NoC proposals. High-level simulators are usually writ-
ten in either C** language, such as VNOC, Booksim,
and TOPAZ, etc. or java language, such as ATLAS and
NoCsim. While Noxim, Nirgam and Nostrum, etc. can
be classified in low-level simulators because of the Sys-
temC language usage. Finally, the NoC proposals need
to be implemented at RTL (Register Transfer Level) by
describing the design in VHDL or Verilog HDL and
prototyped on a FPGA platform (e.g. [47, 58, 59]).

6 STATE OF THE ART ON
RECONFIGURABLE SoCs

6.1 ADRES

ADRES [35] (Architecture for Dynamically Reconfig-
urable Embedded System) is a reconfigurable system
template (Figure 5), which tightly couples a VLIW pro-
cessor and a coarse-grained reconfigurable matrix. The
VLIW processor and the coarse-grained reconfigurable
matrix are integrated into a single architecture but with
two virtual functional views. The reconfigurable matrix
has the capability to access directly to the register
files, caches, and memories of the system. Besides, a
methodology for mapping applications (described in C
language) onto the ADRES template has been devel-
oped. The mapping methodology has the capability of
exploiting loop-level parallelism of algorithms by using
the modulo scheduling algorithm. The target domain of
the ADRES is multimedia and loop-based applications.

6.2 REMUS-II

REMUS-II [68] is a coarse-grained dynamically re-
configurable heterogeneous computing SoC for multi-

=l =)
]]

AMBA2.0 AHB

FIFO Write Channel .

PU

WPEA
128

Context
Group Cache

DDR
SDRAM

Figure 6. The overall architecture of REMUS-II [68].

media and communication baseband processing. The
REMUS-II consists of one or two coarse-grained dy-
namically reconfigurable processing units (RPUs) and
an array of RISC processors (#PU) as shown Figure 6.
The RPU is a powerful dynamically reconfigurable
subsystem of four Reconfigurable Computing Arrays
(RCAs) for speeding up computation-intensive tasks. In
turn, each of RCAs is an array of 8 x 8 RCs (Reconfig-
urable Cells), and can run independently to accelerate
the computing performance. The uPU consists of an
array of RISC microprocessors (WPEA) and an array of
stream processing elements (SPA). The microprocessors
of the yPU communicate with each other and with
the ARM processor by a simple mailbox mechanism.
The SPA is a hardwired IP core for entropy decod-
ing, whereas the uPEA is aimed at executing control-
intensive parts and float-point operations of applica-
tions. By such hybrid, the REMUS-II can achieve the
high performance approximately equivalent to that of
ASIC while maintaining a degree of flexibility close to
that of DSP processors.

6.3 MORPHEUS

MORPHEUS [6] is a dynamically reconfigurable het-
erogeneous SoC, which was developed by the European
Union in the 6" R&D Framework Program. MOR-
PHEUS is integrated different reconfigurable technolo-
gies at several computation granularities that efficiently
address the different requirement of the streaming
applications. The overall architecture of MORPHEUS
platform is shown in Figure 7. To target at different
types of computation, MORPHEUS includes an ARM9
processing core and three heterogeneous reconfigurable
computing engines that are connected together by a
NoC architecture. ARM9 processor runs an embedded
operating system and functions as the central controller
for the whole platform. All of control, synchroniza-
tion, and management functions are performed by
an ARMY processor. Three reconfigurable computing
engines including XPP, DREAM, and M2000 have dif-

H. K. Nguyen et al.: A Survey on Reconfigurable System-on-Chips

83

AMBA (Master/Data Bus)

—

Y

\ A I A A A A
y Y uy sy
ARMS26E.-S Nﬂgﬁ\k Main
o Wanager DMA
\i Sy \ i Y
Inter. AMBA PCM On-Chip Dat: Externel Memory
Contr. Bridge ”ﬁ::::er (nMen!E)ry éD M2000 DREAM XpP Controller
A Y N A ‘A 1 A
A
Y \ Y Y Y /
AMBA (Configuration Bus) External
A 7y Memory
v sy My
[On-Chip Conf. Conf.
Memory DMA A

External Configuration Bus

Ke

v

Figure 7. Simplified MORPHEUS platform architecture [6].

(2) Profile application to
determine critical regions

(1) Iratially
execution
application in
software only < »-| ICache
RP | o
. < | DCache
(5) Partitioned - -
application (3) Partltl_on
executes faster and’ | v critical regions
i i to hard
with lower energy Warp-oriented On-chip CAD | 0 hargware
consumption FPGA (W-FPGA) Module

N (4) Program configuration logic

and update software binary

Figure 8. WARP processor architecture overview [29].

ferent configurable granularity. PACT XPP is a 16-bit
coarse-grain reconfigurable array mainly targeting at
computational-intensive algorithms. DREAM is based
on a medium grain reconfigurable array consisting
of 4-bit ALUs and 4-bit LUTs (Look-up Table). The
architecture mainly targets instruction level parallelism
of computation intensive algorithms that can run it-
eratively using only limited local memory resources.
The M2000 is an embedded FPGA (eFPGA). In order
to efficiently exploit the presented architecture, an inte-
grated software toolset to map C applications to the dif-
ferent heterogeneous reconfigurable engines was also
proposed. Thanks to the various types of reconfigurable
technology, MORPHEUS can provide highly flexible
environments to execute different kind of kernels and
applications such as arithmetic computation, bit-level
computation, control-intensive functions etc.

6.4 WARP

Researchers at the University of California have pro-
posed a new processing architecture, known as a WARP
processor that utilizes a FPGA to improve the per-
formance and energy consumption of an application
executing on a microprocessor [29]. This architecture

consists of four main sections: a host processor, an
efficient on-chip profiler, a WARP-oriented FPGA (W-
FPGA), and an on-chip CAD (Computer as Design)
module. Figure 8 shows the execution and dynamically
mapping of a program on WARP. Unlike previous
approaches that map application onto an FPGA using
a cross compiler, the WARP processor dynamically
maps an application onto its reconfigurable hardware
by using the special hardware. The software’s critical
regions are dynamically detected by Profiler, and then
synthesized to a custom hardware circuit in the FPGA
by on-chip CAD. This paradigm allows users to exploit
the FPGA to improve performance and reduce energy
consumption with no required knowledge of the FPGA.

6.5 Cyberphysical system-on-chip (CPSoC)

Cyberphysical System-on-Chip (CPSoC) is an embed-
ded computing platform that achieves self-awareness
through a combination of cross-layer sensing, actuation,
self-aware adaptations, and online learning [7]. The
CPSoC platform is organized into several layers of
abstraction including applications, operating system,
network and bus communication, hardware, and the
circuit/device layers as shown in Figure 9. The CPSoC
chip consists of most features of the MPSoC based on
an adaptive NoC and supported by on-chip sensing
and actuation elements to enable the system to monitor
its own state and behavior, as well as the external
environment. In addition, an adaptive and reflective
middleware with self-learning mechanisms take charge
of managing and controlling both physical environment
and characteristics of the chip. As a result, the system
can adapt intelligently itself to various contexts of
environment.

7 CONCLUSION

This paper illustrates the feasibility and potential of
reconfigurable System-on-Chips. We provide an over-
all picture on reconfigurable SoCs with highlighting

84 REV Journal on Electronics and Communications, Vol. 7, No. 3—4, July-December, 2017

Application
Layer
>
9
>
@
[J
[J
[J
[]
>
@
z

On-Chip Sensing & Actuation (OCSA)

. On-chip Actuation
1 Unit

Observe Decide

iﬁ

z- Ly

Cross-Layer Decisions &
Sensors (Virtual & | Learning

Physical) (Controller)

Adaptive Reflecti
Middleware Layer

Traditional Operating System

Hypervisor . Memory File Device
Scheduling M: q
anager System Drivers

\

/& Z Z |

Figure 9. CPSoC architecture with adaptive Core, NoC, and the Observe-Decide-Act Loop as Adaptive, Reflexive Middleware [7].

main trends in the emerging architecture of recon-
figurable SoCs, reconfigurable processing fabrics, and
reconfigurable NoCs. We can foresee the possibility
of reconfigurable computing becoming a feature in a
variety of next generation high-performance embedded
applications.

ACKNOWLEDGMENT

This work has been supported by Vietham National
University, Hanoi under Project No. QG.16.33 and Viet-
nam National Foundation for Science and Technol-
ogy Development (NAFOSTED) under grant number
102.01-2013.17.

REFERENCES

[1] C.Bobda, Introduction to Reconfigurable Computing - Archi-
tectures, Algorithms, and Applications. Springer Nether-
lands, 2007, pp. 181- 212.

[2] A. Agarwal, C. Iskander, and R. Shankar, “Survey of
Network on Chip (NoC) Architectures & Contributions,”
Engineering, Computing and Architecture, vol. 3, 2009.

[3] N.E. Jerger and L.-S. Peh, “On-Chip Networks,” in Syn-
thesis Lectures on Computer Architecture, ser. 8. Morgan
& Claypool, 2009.

[4] A. Shoa and S. Shirani, “Run-Time Reconfigurable Sys-
tems for Digital Signal Processing Applications: A Sur-
vey,” Journal of VLSI signal processing systems for signal,
image and video technology, vol. 39, no. 3, pp. 213-235,
Mar. 2005.

[5] H. K. Nguyen, P. Cao, X.-X. Wang, J. Yang, L. Shi,
M. Zhu, L. Liu, and S. Wei, “Hardware Software Co-
design of H.264 Baseline Encoder on Coarse-Grained Dy-
namically Reconfigurable Computing System-on-Chip,”
IEICE Transactions on Information and Systems, vol. E96.D,
pp. 601-615, 2013.

[6] N. S. Voros, M. Hibner, J. Becker, M. Kiihnle,
F. Thomaitiv, A. Grasset, P. Brelet, P. Bonnot, F. Campi,

E. Schiiler, H. Sahlbach, S. Whitty, R. Ernst, E. Bil-
lich, C. Tischendorf, U. Heinkel, F. Ieromnimon,
D. Kritharidis, A. Schneider, J. Knaeblein, and W. Putzke-
Roming, “MORPHEUS: A heterogeneous dynamically
reconfigurable platform for designing highly complex
embedded systems,” ACM Transactions on Embedded Com-
puting Systems, vol. 12, no. 3, 2013.

[7]1 N. Dutt, A. Jantsch, and S. Sarma, “Toward Smart Em-
bedded Systems: A Self-aware System-on-Chip (SoC)
Perspective,” ACM Transactions on Embedded Computing
Systems, vol. 15, no. 2, pp. 22:1-22:27, Feb. 2016.

[8] V. Tehre and R. Kshirsagar, “Survey on Coarse Grained
Reconfigurable Architectures,” International Journal of
Computer Applications, vol. 48, no. 16, 2012.

[9] G. Haiyun, “Survey of Dynamically Reconfgurable
Network-on-Chip,” in Proceedings of the Future Computer
Sciences and Application (ICFCSA), 2011.

[10] H. K. Nguyen and X.-T. Tran, “Design and implementa-
tion of a hybrid switching router for the reconfigurable
Network-on-Chip,” in Proceedings of the International Con-
ference on Advanced Technologies for Communications (ATC),
Oct. 2016, pp. 328-333.

[11] T-T. Nguyen, T.-V. Le-Van, H. K. Nguyen, and X.-T.
Tran, “Routing-path tracking and updating mechanism
in reconfigurable Network-on-Chips,” in Proceedings of
the International Conference on IC Design and Technology
(ICICDT), Jun. 2016, pp. 1-4.

[12] A. R. F Majid Janidarmian and and V. S. Bokharaei,
“Application-Specific =~ Networks-on-Chips ~ Design,”
IAENG International Journal of Computer Science, vol. 38,
no. 1, pp. 16-25, Feb. 2011.

[13] M. H. Neishaburi and Z. Zilic, “A Fault Tolerant Hierar-
chical Network on Chip Router Architecture,” Journal of
Electronic Testing, vol. 29, no. 4, pp. 485497, Aug. 2013.

[14] E Refan, H. Alemzadeh, S. Safari, P. Prinetto, and Z. Nav-
abi, “Reliability in Application Specific Mesh-Based NoC
Architectures,” in Proceedings of the 14" IEEE Interna-
tional On-Line Testing Symposium, Jul. 2008, pp. 207-212.

[15] K.Masselos and N.S.Voros, System level design of Recon-
figurable Systems-on-Chip. Springer, 2005.

[16] T. J. Todman, G. A. Constantinides, S. J. E. Wilton,
O. Mencer, W. Luk, and P. Y. K. Cheung, “Reconfigurable
computing: architectures and design methods,” IEEE

H. K. Nguyen et al.: A Survey on Reconfigurable System-on-Chips

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]
(33]

[34]
(35]

Proceedings - Computers and Digital Technigues, vol. 152,
no. 2, pp. 193-207, Mar. 2005.

A. Abbas, M. Ali, A. Fayyaz, A. Ghosh, A. Kalra, S. U.
Khan, M. U. S. Khan, T. D. Menezes, S. Pattanayak,
A. Sanyal, and S. Usman, “A survey on energy-efficient
methodologies and architectures of network-on-chip,”
Computers & Electrical Engineering, vol. 40, no. 8, pp. 333
— 347, Nov. 2014.

E. Fernandez-Alonso, D. Castells-Rufas, J. Joven, and
J. Carrabina, “Survey of NoC and Programming Models
Proposals for MPSoC,” vol. 9, no. 2, pp. 22-32, 03 2012.
R. Pop and S. Kumar, “A Survey of Techniques for Map-
ping and Scheduling Applications to Network on Chip
Systems,” School of Engineering, Jonkoping University,
SWEDEN., Tech. Rep., 01 2013.

P. K. Sahu and S. Chattopadhyay, “A Survey on Applica-
tion Mapping Strategies for Network-on-Chip Design,”
Journal of Systems Architecture, vol. 59, no. 1, pp. 60-76,
Jan. 2013.

A. K. Singh, M. Shafique, A. Kumar, and J. Henkel,
“Mapping on multi/many-core systems: Survey of cur-
rent and emerging trends,” in Proceedings of the 50"
ACM/EDAC/IEEE Design Automation Conference (DAC),
May 2013, pp. 1-10.

W. Wayne,]J. Ahmed, and M. Grant, “Multiprocessor
System-on-Chip (MPSoC) Technology,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 27, no. 10, pp. 1701-1713, Oct. 2008.

A. Todd, B. David, M. Scott, M. Trevor, C. Chaitail, and
W. Wayne, “Mobile supercomputers,” Computer, vol. 37,
no. 5, pp. 81-83, May 2004.

M. Duranton, K. D. Boschere, A. Cohen, J. Maebe,
and H. Munk, “The HIiPEAC Vision, HiPEAC
Roadmap,” Tech. Rep., 2015. [Online]. Available: http://
www.hipeac.net/system/files /hipeacvision.pdf.

M. K. A. Ganesan, S. Singh, F. May, and J. Becker, “H. 264
Decoder at HD Resolution on a Coarse Grain Dynami-
cally Reconfigurable Architecture,” in Proceedings of the
International Conference on Field Programmable Logic and
Applications, Aug. 2007, pp. 467-471.

S. Kim, Y. H. Park, J. Kim, M. Kim, W. Lee, and S. Lee,
“Flexible video processing platform for 8K UHD TV,”
in Proceedings of the IEEE Hot Chips 27 Symposium (HCS),
Aug. 2015, pp. 1-1.

L. Liu, D. Wang, M. Zhu, Y. Wang, S. Yin, P. Cao, J. Yang,
and S. Wei, “An Energy-Efficient Coarse-Grained Recon-
figurable Processing Unit for Multiple-Standard Video
Decoding,” IEEE Transactions on Multimedia, vol. 17,
no. 10, pp. 1706-1720, Oct. 2015.

Y.-H. Chen and P-A. Hsiung, “Hardware Task Schedul-
ing and Placement in Operating Systems for Dynami-
cally Reconfigurable SoC,” LNCS, vol. 3824, pp. 489-498,
2005.

R. Lysecky, G. Stitt, and F. Vahid, “Warp Processors,”
ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES), vol. 11, no. 3, pp. 659-681, Jun. 2004.
A. E. Kiasari, “Performance Analysis and Design Space
Exploration of On-Chip Interconnection Networks,”
Ph.D. dissertation, Doctoral Thesis in Electronic and
Computer Systems KTH Royal Institute of Technology,
Sweden, 2013.

S. T. Liu, A. Jantsch, and Z. H. Lu, “Comparison of
Circuit Switched NoC with Packet Switched NoC,” in
Proceedings of the Fifth Swedish Workshop on Multicore
Computing, 2012.

XILINX, Zyng-7000 All Programmable SoC, 2013.

Altera, “Intel Arria 10 SoC FPGA devices,” Tech. Rep.,
2014.

“International Technology Roadmap for Semiconduc-
tor,” www.itrs.net/reports.html, Tech. Rep.

B. Mei, M. Berekovic, and J.-Y. Mignolet, ADRES &
DRESC: Architecture and Compiler for Coarse-Grain Recon-

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

(48]

[49]

[50]

[51]

85

figurable Processors. Springer Netherlands, 2007, pp. 255—
297.

J. M. Cardoso and P. C. Diniz, Compilation Techniques for
Reconfigurable Architectures, 1st ed. Springer US, 2009.
R. Dafali, J.-P. Diguet, and M. Sevaux, “Key Research Is-
sues for Reconfgurable Network-on-Chip,” in Proceedings
of the International Conference on Reconfigurable Computing
and FPGAs, 2008.

S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain
Reconfigurable Computing. Springer Netherlands, 2007.
T. Marconi, Y. Lu, K. Bertels, and G. Gaydadjiev, Online
Hardware Task Scheduling and Placement Algorithm on Par-
tially Reconfigurable Devices. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 306-311.

B. Ahmad, A. T. Erdogan, and S. Khawam, “Architec-
ture of a Dynamically Reconfigurable NoC for Adap-
tive Reconfigurable MPSoC,” in Proceedings of the First
NASA/ESA Conference on Adaptive Hardware and Systems
(AHS'06), 2006, pp. 405—411.

A. B. Achballah and S. B. Saoud, “A Survey of Network-
On-Chip Tools,” in Proceedings of the International Journal
of Advanced Computer Science and Applications (IJACSA),
vol. 4, no. 9, 2013.

A. F. Beldachi, M. Hosseinabady, and J. L. Nunez-Yanez,
“Configurable router design for dynamically reconfig-
urable systems based on the SoCWire NoC,” International
Journal of Reconfigurable and Embedded Systems, vol. 2,
no. 1, pp. 27-48, Mar. 2013.

M. A. A. Faruque, T. Ebi, and]J. Henkel, “Configurable
links for runtime adaptive on-chip communication,” in
Proceedings of the Design, Automation Test in Europe Con-
ference Exhibition, April 2009, pp. 256-261.

F. K. Koupaei, A. Khademzadeh, and M. Janidarmian,
“Fault-Tolerant Application-Specific Network-on-Chip,”
in Proceedings of the World Congress on Engineering and
Computer Science (WCECS 2011), vol. II, San Francisco,
USA, Oct. 2011.

P-T. Huang and W. Hwang, “2-level FIFO Architecture
Design for Switch Fabrics in Network-on-Chip,” in Pro-
ceedings of the IEEE International Symposium on Circuits
and Systems, May 2006, pp. 4 pp.—4866.

C. Killian, C. Tanougast, F. Monteiro, and A. Dandache,
“A New Efficient and Reliable Dynamically Reconfig-
urable Network-on-Chip,” Journal of Electrical and Com-
puter Engineering, vol. 2012, 2012.

Y. E. Krasteva, E. de la Torre, and T. Riesgo, “Reconfig-
urable Networks on Chip: DRNoC Architecture,” Journal
of Systems Architecture, vol. 56, no. 7, pp. 293-302, Jul.
2010.

J. Lin, X. Lin, and L. Tang, “Making-a-stop: A New
Bufferless Routing Algorithm for On-chip Network,”
Journal of Parallel and Distributed Computing, vol. 72, no. 4,
pp. 515-524, Apr. 2012.

M. Moadeli, P. Maji, and W. Vanderbauwhede, “Quarc:
A High-Efficiency Network on-Chip Architecture,” in
Proceedings of the International Conference on Advanced
Information Networking and Applications, May 2009, pp.
98-105.

M. B. Stensgaard and J. Spars, “ReNoC: A Network-
on-Chip Architecture with Reconfigurable Topology,” in
Proceedings of the Second ACM/IEEE International Sympo-
sium on Networks-on-Chip, 2008.

P. Mishra, N. A, and]. K. Kishore, “Novel bio-inspired
cobweb topology for highly scalable and cost efficient
networks on chip,” in Proceedings of the IEEE International
Conference on Electronics, Computing and Communication
Technologies (CONECCT), Jan. 2014, pp. 1-6.

M. Modarressi, H. Sarbazi-Azad, and M. Arjomand, “A
hybrid packet-circuit switched on-chip network based
on SDM,” in Proceedings of the Design, Automation Test
in Europe Conference Exhibition, Apr. 2009, pp. 566-569.
M. Bakhouya, “Towards a bio-inspired architecture for
autonomic network-on-chip,” in Proceedings of the Inter-

86 REV Journal on Electronics and Communications, Vol. 7, No. 3—4, July-December, 2017

national Conference on High Performance Computing Simu-
lation, Jun. 2010, pp. 491-497.

[54] N. Jiang, D. B. U., G. Michelogiannakis,]J. D. Balfour,
B. Towles, D. E. Shaw, J. Kim, and W. J. Dally, “A detailed
and flexible cycle-accurate Network-on-Chip simulator,”
in 2013 IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS). 1EEE Computer
Society, 2013, pp. 86-96.

[55] C. A. Nicopoulos, D. Park, J. Kim, and C. R. D. N. Vi-
jaykrishnan, Mazin S. Yousif, “ViChaR: A Dynamic Vir-
tual Channel Regulator for Network-on-Chip Routers,”
in Proceedings of the 39" Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06), 2006.

[56] P. T. Wolkotte, G. J. M. Smit, G. K. Rauwerda, and
L. T. Smit, “An Energy-Efficient Reconfigurable Circuit-
Switched Network-on-Chip,” in Proceedings of the 19"
IEEE International Parallel and Distributed Processing Sym-
posium, Apr. 2005.

[57] 1. Pratomo and S. Pillement, “Impact of design parame-
ters on performance of adaptive Network-on-Chips,” in
Proceedings of the International Conference on High Perfor-
mance Computing Simulation (HPCS), Jul. 2012, pp. 724—
725.

[58] V. Rana, D. Atienza, M. D. Santambrogio, D. Sciuto,
and G. De Micheli, “A Reconfigurable Network-on-Chip
Architecture for Optimal Multi-Processor SoC Commu-
nication,” in Proceedings of the IFIP/IEEE International
Conference on Very Large Scale Integration - System on a
Chip, C. Piguet, R. Reis, and D. Soudris, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, Oct. 2008.

[59] R. Vancayseele, B. A. Farisi, W. Heirman, K. Bruneel, and
D. Stroobandt, “RecoNoC: A reconfigurable network-
on-chip,” in Proceedings of the 6!" International Workshop
on Reconfigurable Communication-Centric Systems-on-Chip
(ReC0S0C), Jun. 2011, pp. 1-2.

[60] S. E. Lee and N. Bagherzadeh, “A high level power
model for Network-on-Chip (NoC) router,” Computers
& Electrical Engineering, vol. 35, no. 6, pp. 837-845, Nov.
2009.

[61] Q. Yu and P. Ampadu, Transient and Permanent Error
Control for Networks-on-Chip. Springer, 2012.

[62] W.-C. Tsai, Y.-C. Lan, Y.-H. Hu, and S.-J. Chen, “Net-
works on Chips: Structure and Design Methodologies,”
JECE, vol. 2012, pp. 2:2-2:2, Jan. 2012.

[63] M. Valinataj, S. Mohammadi, and S. Safari, “Fault-aware
and Reconfigurable Routing Algorithms for Networks-
on-Chip,” IETE Journal of Research, vol. 57, no. 3, pp. 215-
223, 2011.

[64] Z. Qian, D. C. Juan, P. Bogdan, C. Y. Tsui, D. Marculescu,
and R. Marculescu, “A comprehensive and accurate
latency model for Network-on-Chip performance analy-
sis,” in Proceedings of the 19" Asia and South Pacific Design
Automation Conference (ASP-DAC), Jan. 2014, pp. 323-328.

[65] G. Kumaran and S. Gokila, “Dynamic Router Design
for Reliable Communication,” in Proceedings of the In-
ternational Conference on Global Innovations In Computing
Technology, 2014.

[66] H. Singh, M.-H. Lee, G. Lu, F J. Kurdahi, and
N. Bagherzadeh, “MorphoSys: an integrated recon-
figurable system for data-parallel and computation-
intensive applications,” IEEE Transactions on Computers,
vol. 49, no. 5, pp. 465-481, 2000.

[67] X. Technologies, “XPP-III Processor Overview,” White
Paper, Tech. Rep., Jul. 2013.

[68] X. Liu, C. Mei, P. Cao, M. Zhu, and L. Shi, “Date Flow
Optimization of Dynamically Coarse Grain Reconfig-
urable Architecture for Multimedia Applications,” IEICE
Transactions, vol. 95-D, no. 2, pp. 374-382, 2012.

[69] H.-L. Chao, S.-Y. Tung, and P-A. Hsiung, “Dynamic
Task Mapping with Congestion Speculation for Recon-
figurable Network-on-Chip,” ACM Transactions on Recon-
figurable Technology and Systems (TRETS), vol. 10, no. 1,

pp- 3:1-3:25, Sep. 2016.

[70] A. Nieto, D. L. Vilarino, and V. M. Brea, “PRECISION: A
Reconfigurable SIMD /MIMD Coprocessor for Computer
Vision Systems-on-Chip,” IEEE Transactions on Comput-
ers, vol. 65, no. 8, pp. 2548-2561, Aug. 2016.

[71] E. An, X. Zhang, L. Chen, and H.]J. Mattausch, “Dy-
namically reconfigurable system for LVQ-based on-chip
learning and recognition,” in Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS),
May 2016, pp. 1338-1341.

Hung Kiem Nguyen received the B.S. and
M.S. degrees in electronic engineering from
Vietnam National University, Hanoi, Vietnam,
in 2003 and 2005, respectively. He received the
Ph.D. degree in electronic engineering from

a8
=y Southeast University, Nanjing, China in 2013.
He is currently a researcher at VNU Key
- (’ Laboratory for Smart Integrated Systems,
— |
N AT

VNU University of Engineering and Tech-

nology. His research interests mainly include

multimedia processing, reconfigurable com-
puting, and SoC designs.

Thanh-Vu Le-Van was born in Hue, Vietnam.
He received a Bachelor of Science degree in
Physics from Hue University of Sciences — a
member university of Hue University and a
Master of Science degree from Vietnam Na-
tional University Hanoi (VNU) in Electronics
Al Engineering and Communications.
k U \ Currently, he is pursuing his Ph.D degree
0\ RS at VNU University of Engineering and Tech-
’/ /lm Il M\ \ nology (VNU-UET), a member university of
' VNU. He joined the Key Laboratory for Smart
Integrated Systems (SIS Lab) of VNU-UET in 2010. His research inter-
ests include Network-on-Chip (NoC), High-level modeling methods,
Reconfigurable architecture.

He is a member of the IEEE (SSCS) and the Radio Electronics
Association of Vietnam (REV).

Xuan-Tu Tran received a Ph.D. degree in 2008
from Grenoble INP (in collaboration with the
CEA-LETI), France, in Micro Nano Electron-
ics. He is currently an Associate Professor at
the Faculty of Electronics and Telecommuni-
cations, VNU University of Engineering and
Technology (VNU-UET), a member university
of Vietnam National University, Hanoi (VNU).
He is also Adjunct Professor at the University
of Technology Sydney (UTS), Australia.

He is currently Director of VNU Key Lab-
oratory for Smart Integrated Systems (SISLAB). He is in charge for
CoMoSy, VENGME, ReSoNoC, ADEN4IOT projects for embedded
systems and multimedia applications. His research interests include
design and test of systems-on-chips, networks-on-chips, design-for-
testability, asynchronous/synchronous VLSI design, low power tech-
niques, and hardware architectures for multimedia applications.

He is a Senior Member of the IEEE, IEEE Circuits and Systems
(CAS), IEEE Solid-State Circuits Society (SSCS), member of IEICE,
and the Executive Board of the Radio Electronics Association of
Vietnam (REV).

