
REV Journal on Electronics and Communications, Vol. 7, No. 1–2, January–June, 2017 29

Regular Article

An Online Distributed Boundary Detection and Classification
Algorithm for Mobile Sensor Networks

Pham Duy Hung1, Tran Quang Vinh1, Trung Dung Ngo2

1 University of Engineering and Technology, Hanoi, Vietnam
2 More-Than-One Robotics Laboratory, University of Prince Edward Island, Canada

Correspondence: Pham Duy Hung, hungpd@gmail.com
Communication: received 14 March 2017, revised 22 June 2017, accepted 9 July 2017
Online publication: 30 October 2017, Digital Object Identifier: 10.21553/rev-jec.158
The associate editor coordinating the review of this article and recommending it for publication was Prof. Tran Duc Tan.

Abstract– We present a novel online distributed boundary detection and classification algorithm in order to improve
accuracy of boundary detection and classification for mobile sensor networks. This algorithm is developed by incorporating
a boundary detection algorithm and our newly proposed boundary error correction algorithm. It is a fully distributed
algorithm based on the geometric approach allowing to remove boundary errors without recursive process and global
synchronization. Moreover, the algorithm allows mobile nodes to identify their states corresponding to their positions
in network topologies, leading to self-classification of interior and exterior boundaries of network topologies. We have
demonstrated effectiveness of this algorithm in both simulation and real-world experiments and proved that the accuracy
of the ratio of correctly identified nodes over the total number of nodes is 100%.

Keywords– Distributed boundary detection, Distributed boundary classification, Mobile sensor network.

1 Introduction

A mobile sensor network can be deployed for sur-
veillance and reconnaissance, security and patrolling,
and environmental monitoring in an unknown environ-
ment. Coverage area of a deployed sensor network is
identified through the shape formed by the boundary
nodes. In this paper, we focus on developing an online
distributed boundary detection and classification algorithm
enabling mobile sensor nodes to identify whether they
are (inner or outer) boundary nodes of mobile sen-
sor networks. This algorithm plays a crucial role of
boundary node identification in many mobile systems,
such as controlling cohesion configuration of a robotic
swarm [1], monitoring dynamic obstacles in mobile
sensor networks, detecting intrusion in networks [2].

In [3–10], the boundary detection algorithms were
designed for sensor networks with static nodes so they
do not require node locations and relative distance bet-
ween nodes rather than using connectivity information
in the network. In [3], the algorithm was developed for
high density of static sensor networks by using a key
feature of the distribution of nodes in which the nodes
on the boundary have a smaller degree than the interior
ones. A node can be considered as a boundary node
by estimating a global distribution and a threshold
degree. In [4], the deterministic boundary detection
algorithm was proposed for a large-scale network of
static sensors scattered in a polygonal region, e.g., a
street network. The nodes only interact each other
through communication without information of coor-
dinates and geometric distances. Based on a stronger

structural criterion of particular subgraph, called m-
flower, interior and exterior boundaries are detected
if their edges are in the flower boundary. The flower
pattern was also used in [6] to detect the boundaries for
both unit-disk graph and quasi-unit disk graph. In [5],
a distributed boundary detection algorithm for wireless
sensor networks (WSNs) was developed by exploiting
special structures of the shortest paths to detect the
existence of hole boundaries in the network. Another
algorithm using three-hop neighbouring node informa-
tion for detecting boundary around an obstacle can be
found in [7]. In [8], the Localized Voronoi Polygons
(LVP) was used to identify boundary nodes. If the LVP
of a node is a finite number, the node is considered
as an internal node, otherwise, the node is set as a
boundary node. In [9], the concept of independent set
from the graph theory was exploited to develop an
algorithm for detecting boundaries and holes in the
WSNs. The algorithm includes three main steps: each
node builds an one-hop graph based on connectivity
information of its neighbours; independent sets of car-
dinality are established, and the independent sets are
connected to search for closed paths. In [10], boundary
nodes are identified based on computational geometry
using absolute angles of their neighbours in the local
Cartesian coordinate system.

For networks of mobile sensor nodes, so-called mo-
bile sensor networks (MSNs), the cyclic-shape algo-
rithm [11] can be considered as the first boundary
detection algorithm. This method requires local net-
work geometry in which each node checks its missing
sectors to identify whether it is a boundary node.

1859-378X–2017-1204 c© 2017 REV

30 REV Journal on Electronics and Communications, Vol. 7, No. 1–2, January–June, 2017

1 2 3 4 5 6 7 8 9 10
10

11

12

13

14

15

16

17

18

11

2

1

2

31

2

3

4

1

2

3

4

5

1

2

3

4

5
6

1

2

3

4

5
6

7

1

2

3

4

5
6

7

8

1

2

3

4

5
6

7

8

9

1

2

3

4

5
6

7

8

910

1

2

3

4

5
6

7

8

910

11

1

2

3

4

5
6

7

8

910

11

12

1

2

3

4

5
6

7

8

910

11

12

13

1

2

3

4

5
6

7

8

910

11

12

13

14

1

2

3

4

5
6

7

8

910

11

12

13

14

15

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24 1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

33

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

401

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

681

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

751

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

100

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

100

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

100

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

100

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

100

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

100

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

100

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

100

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

100

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

100

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

100

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

100

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28 29

30 31

32

3334

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53
54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91

92 93

94

95

96
97

98 99

100

Figure 1. A demonstration of the local boundary detection and clas-
sification for a network with 100 nodes. The network is bounded by
an exterior boundary (blue polygon) established by outer boundary
nodes (magenta) and boundary edges (blue). Four voids inside the
network are bounded by interior boundaries (green polygons) formed
by inner boundary nodes (red) and boundary edges (green).

However, it exists bugs of the boundary detection algo-
rithm because the algorithm is not purely distributed
when using a recursive method with the global syn-
chronization for resetting the suppressed error status.
In another approach, each node of MSNs uses only
communication to collect information from its three-
hop neighbours to construct its own contours, so it
does not need knowledge of relative distance between
nodes [12]. Thanks to status of contours, a node is
capable of identifying itself whether it is a boundary
node. In [13], authors extended the idea of isocontour
and proposed a boundary detection algorithm using
two-hop neighbours to build its isocontour.

In this paper, we consider the boundary detection
and classification problem for MSNs. The shortcoming
of boundary detection errors in [11] motivates our
research on developing a fully distributed boundary
detection and classification algorithm based on a ge-
ometric topology approach. This paper is a compre-
hensive extension of our earlier work in [14]. In [14],
we presented an improved boundary detection algo-
rithm from the original algorithm in [11] by adding
boundary error correction algorithm (BEC), allowing
nodes to self-identify their states as either interior nodes
or boundary nodes. In this paper, we have further
developed this algorithm with the boundary classi-
fication (BC) algorithm to let boundary nodes self-
classify as outer or inner boundary nodes, leading to
self-classification of interior or exterior boundaries of
mobile sensor network topologies. Last but not least,
we have examined and evaluated this online distributed
boundary detection and classification in both simu-
lations and real-world experiments to prove that the
accuracy of the algorithm is 100%.

The paper is organised as follows: Section 2 addresses
a boundary detection algorithm. The boundary clas-
sification algorithm is described in Section 3. Experi-
ment results are presented and discussed in Section 4.
Section 5 draws conclusion.

2 Boundary Detection

Given a mobile sensor network consisting of N nodes
in which each node is a mobile sensor node capable of
measuring relative distance of its neighbouring nodes
inside its limited sensing range rc and carrying out
peer-to-peer communication with nodes inside its com-
munication range. In reality, the communication range
is greater than the sensing range, so we assume that if
two nodes are inside sensing range of each other, they
can communicate to exchange information.

Geometric configuration of a mobile sensor network
depends on spatial distribution of the nodes, which is
considered in 2-dimensional space. The outer shape of
the geometric configuration is defined as its boundary.
Nodes on the boundary are called as boundary nodes
while the others are called as interior nodes. Bounda-
ries can be classified into exterior boundaries or interior
boundaries in which a void inside the configuration is
bounded by an interior boundary. Nodes inside sen-
sing range of node i are called its neighbours, Ni. A
connectivity between nodes i and j is denoted by eij,
which is positive if j ∈ Ni or zero if j /∈ Ni.

2.1 Boundary Detection Method

A local boundary detection algorithm presented in [11]
allows node i to identify itself as either a boundary
node or an interior node. Node i has neighbours Ni
sorted in a cyclic order. Each pair of two adjacent neig-
hbours (j, k) make a sector with an angle θ

jk
i classified

into two types of sector as follows:
• Missing Sector: A sector (j, k) is called a missing

sector if nodes i and j are not connected, ejk = 0, or
if the angle between them is greater than or equal
to π, θ

jk
i ≥ π. The angle θ

jk
i is called as missing

sector angle.
• Triangle sector: A sector (j, k) is called a triangle

sector if nodes i and j are connected, ejk > 0. In
this case, nodes i, j, k form a triangle.

A set of consecutive sectors in node i’s cyclic order
is denoted by Pi. Node i uses states of sectors in Pi to
classify itself as follows:
• Interior node: A node is self-labeled as an interior

node if its all sectors are triangle sectors.
• Boundary node: A node is self-labeled as a boundary

node if it has at least one missing sector. The edges
on the boundary node’s missing sector are called
as boundary edges.

Because a boundary is a closed-loop inter-
connectivity established by boundary edges in
which each boundary node is connected with two
neighbouring ones, the algorithm to identify boundary
errors is illustrated in Figure 3 and defined as follows:

Definition 1 (Boundary error). A boundary node is seen
as a boundary error if it is directly or indirectly connected
with an interior node through boundary edges.

In other words, boundary node i with a missing
sector (j, k) ∈ Pi becomes a boundary error if at least

P. D. Hung et al.: An Online Distributed Boundary Detection and Classification Algorithm for Mobile Sensor Networks 31

i

i

j k

i

j k

g

1

4

1

3
5

j

i

k

5

3

2

62

4

θi
jk ≥ 휋

θi
jk < 휋

(a) Interior node

i

i

j k

i

j k

g

1

4

1

3
5

j

i

k

5

3

2

62

4

θi
jk ≥ 휋

θi
jk < 휋

(b) Boundary node with θ
jk
i ≥ π

i

i

j k

i

j k

g

1

4

1

3
5

j

i

k

5

3

2

62

4

θi
jk ≥ 휋

θi
jk < 휋

(c) Boundary node with θ
jk
i < π

i

i

j k

i

j k

g

1

4

1

3
5

j

i

k

5

3

2

62

4

θ ≥ 휋

θ < 휋

(d) Both i and g are interior nodes

Figure 2. Local boundary detection algorithm

1

2

5

4
3

Figure 3. Boundary errors: a network of 40 nodes with some boun-
dary errors (left), and a zoomed-in boundary error (right).

one node of the pair (j, k) or another node on the
boundary indirectly connected with node i is an interior
node.

The boundary errors can be removed by recursively
identifying all the single-node errors and labelling them
as interior nodes as described in [11]. This process
requires some sort of global synchronization to peri-
odically reset the suppressed error status on the nodes
and is repeated until no existing boundary error, thus
the algorithm developed in [11] is not fully distributed.
Moreover, the authors claimed that the accuracy of
the local boundary detection algorithm, the ratio of
correctly detected nodes to the total number of nodes,
reaches 86% in a static configuration in simulation. Last
but not least, this algorithm has not been examined
through real-world experiments.

Our motivation is to upgrade the local boundary
detection algorithm to become a fully distributed al-
gorithm, increase its accuracy of boundary detection
and classification algorithm, and examine it through
real-world experiments. Moreover, our algorithm in 2.2
allows boundary errors to self-correct without using the
recursive process and global synchronization.

2.2 Boundary Error Correction

In this section, we present a boundary error correction
algorithm (BEC) used to detect and remove boundary
errors. It is easy to realize that a missing sector (j, k) of
node i is formed in a topology with at least four edges
as illustrated in Figure 4. A quadrangle is established by
the missing sector and a node g in Nj\i = Nj \ {Ni ∪ i}
and/or Nk\i = Nk \ {Ni ∪ i} formed in either a closed
quadrangle with four edges or an open quadrangle with

j

i

k

g

ekg= 1

i

g

	ℓ k

j ekg= 1

(a) Closed quadrangle

ekg= 0

g

j

	ℓ
i

	푚

k

ekg= 0
g

i

j k

(b) Open quadrangle

Figure 4. A quadrangle is established by a missing sector (j, k) and
a node g ∈ Nj\i in two cases: (a) a closed quadrangle with ekg = 1,
and (b) a open quadrangle with ekg = 0.

more than four edges. We release a new concept as
follows:

Definition 2 (e-triangle sector). If node i’s quadrangle is
divided into triangles, node i’s missing sector formed in the
quadrangle is called an e-triangle sector.

Intuitively, the quadrangle established by nodes
i, j, k, g can be divided into triangles by one of three
cases as follows:

• Existing node j’s triangle sector (g, m) ∈ Pj as
illustrated in Figure 6.a

• Existing node k’s triangle sector (g, `) ∈ Pk as
illustrated in Figure 6.b.

• Existing node g’s triangle sector (`, m) ∈ Pg as
illustrated in Figure 6.c.

Let Nij and Nik be neighbouring nodes of node i in
areas Sij and Sik, respectively, as described in Figure 5.
Conditions corresponding to the scenarios to identify
whether the missing sector (j, k) ∈ Pi is an e-triangle
sector or not are given as follows:

• There exists node m ∈ Nik connected to node
j, ejm = 1, so that nodes j, m have at least one
common neighbour g not in Ni, Nj\i ∩ Nm\i 6= ∅.

cond1 =

{
1 ∃m ∈ Nik : (ejm = 1) ∧ (Nj\i ∩ Nm\i 6= ∅)

0 Otherwise
(1)

The pair (i, g) of node j contain two triangle sectors
(i, m) ∈ Pj and (g, m) ∈ Pj, so it is not a missing sector.
Thus, node j is not a boundary node of the quadrangle;
that is, it is an interior node.

32 REV Journal on Electronics and Communications, Vol. 7, No. 1–2, January–June, 2017

1

4

5

3

2

1

3
5

62

4

1

5

4

2

3

φ =
π
2 −

2

i

S NS N

k
j

Figure 5. Subset of neighbouring nodes

• There exists node ` ∈ Nij connected to node k,
ek` = 1, so that nodes k, ` have at least one common
neighbour g not in Ni, Nk\i ∩ N`\i 6= ∅.

cond2 =

{
1 ∃` ∈ Nij : (ek` = 1) ∧ (Nk\i ∩ N`\i 6= ∅)

0 Otherwise
(2)

The pair (i, g) of node k contain two triangle sectors
(i, `) ∈ Pk and (g, `) ∈ Pk, so it is not a missing sector.
Thus, node k is not a boundary node of the quadrangle;
that is, it is an interior node.
• There exists nodes ` ∈ Nij and m ∈ Nik connected

together, e`k = 1, so that they have at least one
common neighbour g not in Ni, N`\i ∩ Nm\i 6= ∅.

cond3 =

1 ∃` ∈ Nij, m ∈ Nik : (e`m = 1)∧

(N`\i ∩ Nm\i 6= ∅)

0 Otherwise
(3)

The pair (j, k) of node g contain at least two triangle
sectors (j, `) ∈ Pg and (m, `) ∈ Pg, thus it is not a
missing sector. Therefore, node g is not a boundary
node of the quadrangle; that is, it is an interior node.

Proposition 1 (Boundary error). A boundary error ap-
pears on a boundary node if and only if it has an e-triangle
sector.

Proof : If node i has an e-triangle sector (j, k) ∈ Pi, it
satisfies that (cond1 = 1)∨ (cond2 = 1)∨ (cond3 = 1). It
means that one of three nodes j, k, g is an interior node.
According to the definition 1, node i is a boundary
error.

If a boundary error appears on a missing sector
(j, k) ∈ Pi formed in a quadrangle {i, j, k, g}, one of
three nodes j, k, g must be not a boundary node of the
quadrangle. Thus, one of pairs (i, g) of node j, (i, g) of
node k, and (`, m) of node g is not a missing sector; that
is, it satisfies the one of the conditions for an e-triangle
sector, (cond1 = 1) ∨ (cond2 = 1) ∨ (cond3 = 1). Hence,
the missing sector (j, k) ∈ Pi is an e-triangle sector. This
completes the proof.

Proposition 2 (Boundary error correction). If all the
nodes with e-triangle sectors are labeled as interior nodes,
there does not exist any boundary error in the network.

Proof : We use proof by contradiction. Assume that all
the nodes with e-triangle sectors are labeled as interior

nodes but there still exists a boundary error in the
network. According to the proposition 1, the boundary
error has an e-triangle sector. This is contradict to the
assumption so the proposition is proven.

Algorithm 1: e-triangle sector detection

Input: (j, k) ∈ Pi, Ni, Nj, Nk
Output: etrianglesector
Initialization: Cond1 = 0, Cond2 = 0, Cond3 = 0
etrianglesector ← 0
[Nij, Nik] = AdjacentNeighbours(θ jk

i ,
π

2
)

for ` ∈ Nij do
for m ∈ Nik do

Get N`, Nm
if (ejm = 1) ∧ (Nj\i ∩ Nm\i 6= ∅) then

Cond1 = 1
if (ek` = 1) ∧ (Nk\i ∩ N`\i 6= ∅) then

Cond2 = 1
if (e`m = 1) ∧ (N`\i ∩ Nm\i 6= ∅) then

Cond3 = 1

if (Cond1 = 1) ∨ (Cond2 = 1) ∨ (Cond3 = 1) then
etrianglesector = 1

The core of the BEC is an e-triangle sector detection
algorithm as shown in Algorithm 1. The algorithm
considers a missing sector (j, k) ∈ Pi. It uses a function
AdjacentNeigbhours(θ jk

i , π
2) to get node i’s neighbours

Nij and Nik in its areas Sij and Sik, respectively. In this
algorithm, all existing edges {ejm, ek`, e`m} on Nij and
Nik are searched and checked whether the conditions
of an e-triangle sector is satisfied. If (Cond1 = 1) ∨
(Cond2 = 1) ∨ (Cond3 = 1), it returns etrianglesector =
1, confirming that the missing sector (j, k) ∈ Pi is an
e-triangle sector.

This algorithm only uses sensing to identify sets Ni
and Pi, and one-hop communication between node i
and its neighbours j, k, `, m to determine sets Nj, Nk, N`,
and Nm respectively, so it is fully distributed in mea-
ning that each node only uses local information from
itself and its neighbours to classify itself as a boun-
dary node or an interior node. The algorithm does
not require global synchronization to periodically reset
the suppressed error status on the nodes. Therefore,
computational complexity of this algorithm is O(N2

i),
but only O(1) bits/node/round of communication is
used to detect an e-triangle sector.

3 Boundary Classification

In this section, we present a boundary classification algo-
rithm (BC) allowing a node to classify itself whether it is
on an interior or exterior boundary. Figure 1 illustrates
a result of this algorithm applied for a network of 100
nodes. Before presenting the algorithm, we remain the
concepts of a boundary as follows:

Definition 3 (Boundary). A boundary is a closed-loop
inter-connectivity containing a sequence of boundary nodes

P. D. Hung et al.: An Online Distributed Boundary Detection and Classification Algorithm for Mobile Sensor Networks 33

φ =
π
2 −

2

i

S NS N

k
j

i

m

kj

g

j

i

k

g

	ℓ

i

j
k

m	ℓ

g

(a) node j is an interior node

φ =
π
2 −

2

i

S NS N

k
j

i

m

kj

g

j

i

k

g

	ℓ

i

j
k

m	ℓ

g

(b) node k is an interior node

φ =
π
2 −

2

i

S NS N

k
j

i

m

kj

g

j

i

k

g

	ℓ

i

j
k

m	ℓ

g

(c) node g is an interior node

Figure 6. Scenarios for an e-triangle sector (j, k) ∈ Pi where node i’s quadrangle is divided by a triangle sector: (a) (m, g) ∈ Pj; (b) (`, g) ∈ Pk ;
(c) (`, g) ∈ Pg.

Figure 7. Boundary classification algorithm: A node i = 1 has
a missing sector (2, 26). The message broadcasted by node i is
forwarded from node 2 to node 26 via the boundary edges (green).
Only boundary nodes (red) {2, 6, 7, 8, 10, 11, 26} on the green polygon
are allowed to forward the message.

such that each node is connected with two neighbouring ones
though two boundary edges.

Given a boundary established by nb boundary nodes
and denote Θ as the sum of the missing sector angles
on the boundary. As mentioned above, there are two
typical boundaries: interior and exterior boundary.
• Interior boundary: An interior boundary bounds a

void inside the geometric configuration of a mobile
sensor network, so its missing sector angles are
interior angles of the polygon established by the
boundary. According to polygon theorem, the sum
of the interior angles of the polygon with nb edges
equals to (nb− 2) ∗π. Hence, the interior boundary
has property: Θ = (nb − 2) ∗ π. Nodes on an
interior boundary are called inner boundary nodes.

• Exterior boundary: An exterior boundary is outer
shape of the geometric configuration, so its missing
sector angles are complement of interior angles of
the polygon established by the boundary. Hence,
the exterior boundary has property: Θ = nb ∗ 2π−
(nb − 2) ∗ π = (nb + 2) ∗ π. Nodes on an exterior
boundary are called outer boundary nodes.

In summary, a boundary can be classified as an
interior boundary if it has Θ = (nb − 2) ∗ π or an
exterior boundary if it has Θ = (nb + 2) ∗ π. Any
boundary node can be classified as either an inner or
outer boundary node if it knows Θ and nb. On a node,
the pair (Θ, nb) can be obtained by sending a "ping"

message from a side of its missing sector to another side
through a set of boundary nodes as illustrated in Figure
7. The procedure can be described as follows. In order
to classify whether boundary node i with a missing
sector (j, k) is an inner or outer one, node i falls into
active mode using multi-hop communication to gather
missing sector angles Θ and number of boundary nodes
nb on the boundary. It broadcasts a message, containing
Θ and nb with initialization Θ = θ

jk
i and nb = 1,

respectively, for path discovery from node j to node
k through the ad-hoc network of the mobile nodes. A
node broadcasting the message is called a transmitter.
All neighbours of a transmitter can receive the message,
but a boundary node on its common boundary edge is
allowed to forward the message with updated variables
Θ and nb. Updating variables is performed by adding
the missing sector angle of the transmitter to Θ and
increasing nb by one. Thank to the message forwarded
to reach node k, node i has possibility of identifying the
sequence of boundary nodes on the path and checking
the boundary classification condition by values Θ and
nb. Node i is self-labeled as an inner boundary node
if Θ = (nb − 2) ∗ π or an outer boundary node if
Θ = (nb + 2) ∗ π, and rebroadcasts a message contai-
ning the list through the path in order to update the
classification states for all boundary nodes on the list.
When a boundary node has been self-labeled, it works
in passive mode while the self-classification is happening
on other boundary nodes. Note that, a node belongs
to some difference boundaries if it has some missing
sectors.

Unlike to the algorithm in [11], in our algorithm,
every boundary node can be considered as a root of the
boundary for self-classification when it is activated in
the active mode. The boundary classification algorithm
uses multi-hop communication, so it requests the com-
munication complexity O(nb), where nb is number of
boundary nodes on the boundary.

4 Experiments and Discussions

4.1 Simulation

Assume that each node has ability of identifying
its nearest neighbours and measuring their relative

34 REV Journal on Electronics and Communications, Vol. 7, No. 1–2, January–June, 2017

80

85

90

95

100

105

100 100 200 200 300 300
Number of robots

100 100 200 200 300 300100 100 200 200 300 300100 100 200 200 300 300100 100 200 200 300 300

R
at

io
 o

f c
or

re
ct

ly
 id

en
tif

ie
d

ro
bo

ts
 to

 th
e

to
ta

l (
%

)

With BEC
Without BEC

Figure 8. Accuracy of the online local boundary detection algo-
rithm

80

85

90

95

100

105

100 200 300
Number of robots

100 200 300100 200 300

R
at

io
 o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 r
ob

ot
s

to
 th

e
to

ta
l (

%
)

Accuracy of BC algorithm

Figure 9. Accuracy of the boundary classification algorithm

7 0 6 2 10 1 0 3 0 5
0

0.1

0.2

0.3

0.4

Boundary error rate on each scenario

Ti
m

e(
s)

100 robots with recursive algorithm
100 robots with BEC algorithm

(a) 100 nodes

11.5 10.5 5.5 13 3.5 7 6 13 0.5 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Boundary error rate on each scenario

Ti
m

e(
s)

200 robots with recursive algorithm
200 robots with BEC algorithm

(b) 200 nodes

4 12 9 10.3 6.7 3.7 9.3 6.3 3 7.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Boundary error rate on each scenario

Ti
m

e(
s)

300 robots with recursive algorithm
300 robots with BEC algorithm

(c) 300 nodes

Figure 10. Time consuming for boundary detection with Tm = 0.0125s

7 0 6 2 10 1 0 3 0 5
0

0.5

1

1.5

2

2.5

Boundary error rate on each scenario

Ti
m

e(
s)

100 robots with recursive algorithm
100 robots with BEC algorithm

(a) 100 nodes

11.5 10.5 5.5 13 3.5 7 6 13 0.5 1.5
0

1

2

3

4

5

Boundary error rate on each scenario

Ti
m

e(
s)

200 robots with recursive algorithm
200 robots with BEC algorithm

(b) 200 nodes

4 12 9 10.3 6.7 3.7 9.3 6.3 3 7.7
0

1

2

3

4

5

Boundary error rate on each scenario

Ti
m

e(
s)

300 robots with recursive algorithm
300 robots with BEC algorithm

(c) 300 nodes

Figure 11. Time consuming for boundary detection with Tm = 0.125s

0 200 400 600 800 1000 1200
50

55

60

65

70

75

80

85

90

95

100

105

Time−steps

R
at

io
 o

f c
or

re
ct

ly
 id

en
tif

ie
d

ro
bo

ts
 to

 th
e

to
ta

l (
%

)

With BEC
Without BEC

Figure 12. Accuracy of the boundary detection algorithm over
time in simulation with 50 robots

0 50 100 150 200
50

55

60

65

70

75

80

85

90

95

100

105

Time−steps

R
at

io
 o

f c
or

re
ct

ly
 id

en
tif

ie
d

ro
bo

ts
 to

 th
e

to
ta

l (
%

)

With BEC
Without BEC

Figure 13. Accuracy of the boundary detection algorithm over
time in real experiment with 14 robots

localisation within limited sensing range rc = 1m. Two
connected nearest neighbouring nodes can exchange

information with delay communication time between
them limited by Tm.

P. D. Hung et al.: An Online Distributed Boundary Detection and Classification Algorithm for Mobile Sensor Networks 35

We have examined the effectiveness of the BEC and
BC algorithms in both static and dynamic configuration
established by an ad-hoc network of sensor nodes on a
flat surface in 2D model.

Firstly, the BEC and BC algorithms are investigated
in a static configuration with nodes that are spatially
distributed with the Gaussian random distribution as
described in [15] using 100, 200, and 300 nodes. Each
algorithm was simulated in 10 different scenarios with
delay communication time Tm = 0.0125s and Tm =
0.125s corresponding to the node speed rate (RSR) bet-
ween node movement and communication RSR = 0.001
and RSR = 0.01 as examined in [11].

The simulation results show that accuracy of the local
boundary detection algorithm with or without BEC al-
gorithm as illustrated in Figure 8. The median accuracy
of the algorithm without BEC is 97.50%, 93.50%, and
92.83% in cases 100, 200, and 300 nodes, respectively
while the accuracy reaches 100% for all the cases when
the BEC algorithm was applied. Figure 9 shows the
accuracy of the BC algorithm. The result confirms that
the algorithm successfully classifies boundaries for all
the randomized scenarios.

The running time of the local boundary detection
algorithm is shown in Figures 10 and 11. Because
boundary error correction using recursive algorithm
depends on number of boundary errors and requires
complexity of communication O(N), the running time
with Tm = 0.125s is greater than with Tm = 0.0125s
and it is more time consuming in scenarios with high
boundary error rate. Unlike the recursive algorithm, the
BEC algorithm has complexity of communication O(1)
so that it only depends on the status of neighbouring
nodes. The results show that the BEC algorithm is faster
than the recursive algorithm when Tm = 0.0125s and
the boundary error rate in the network is more than
6.6% while the running time of the BEC algorithm is
much lower than the one of the recursive algorithm for
all scenarios having the boundary error rate not equal
zero with Tm = 0.125s.

Secondly, the BEC and BC algorithm were examined
in a dynamic configuration with 50 mobile nodes.
Boundaries were detected online while the nodes was
deployed to track and occupy multiple targets as des-
cribed in [15]. All nodes detect and classify themselves
successfully overtime without any error. Accuracy of
the boundary detection algorithm over time is shown
in Figure 12. The video demonstration of the simulation
can be seen at this link1.

4.2 Experiments
In real-world experiments, we used 14 mobile robots

as mobile sensor nodes to investigate the effectiveness
of the online boundary detection and classification
algorithm in a dynamic network. The robots are 14cm
diameter disc-like differentially driven wheel platforms
as in Figure 14. The sensing and communication range
is set at rc = 1 and the maximum velocity of the nodes
is set at 0.8m/s, similar to the simulation.

1https://youtu.be/RFf-jBtJL2k

Figure 14. The real mobile robots used in the experiments

Figure 15. A boundary established in a network consisting of 14
robots: visualization (left) and the real system (right).

The online boundary detection and classification
were measured while the robots was deployed on a
flat surface to track and occupy multiple targets. We
show that boundary nodes were successfully detected
and classified with the accuracy 100% while the robots
cooperatively tracked and occupied multiple targets as
shown in Figure 13. The boundary was online created
as illustrated in Figure 15 and the video demonstration
can be seen at this link2.

5 Conclusion

We have presented the online local boundary detection
and classification algorithm with error correction based
on the geometric approach in 2D model. Using this
algorithm, all boundary errors in a network can be
removed without recursive process and global synchro-
nization. The accuracy of this new boundary detection
and classification is 100%. We validated the quality
of the new boundary detection and classification al-
gorithm in simulations of both static and dynamic
network configurations, and the real-world experiments
with 14 mobile robots.

References

[1] S. K. Lee and J. McLurkin, “Distributed cohesive con-
figuration control for swarm robots with boundary in-

2https://youtu.be/Vao9U8Z6Qxs

36 REV Journal on Electronics and Communications, Vol. 7, No. 1–2, January–June, 2017

formation and network sensing,” in Intelligent Robots
and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on. IEEE, 2014, pp. 1161–1167.

[2] Y. Keung, B. Li, and Q. Zhang, “The intrusion detection
in mobile sensor network,” in Proceedings of the eleventh
ACM international symposium on Mobile ad hoc networking
and computing. ACM, 2010, pp. 11–20.

[3] S. P. Fekete, A. Kröller, D. Pfisterer, S. Fischer, and
C. Buschmann, Neighborhood-Based Topology Recognition
in Sensor Networks. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 123–136.

[4] A. Kröller, S. P. Fekete, D. Pfisterer, and S. Fischer,
“Deterministic boundary recognition and topology ex-
traction for large sensor networks,” in Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algo-
rithm. Society for Industrial and Applied Mathematics,
2006, pp. 1000–1009.

[5] Y. Wang, J. Gao, and J. S. Mitchell, “Boundary recog-
nition in sensor networks by topological methods,” in
Proceedings of the 12th annual international conference on
Mobile computing and networking. ACm, 2006, pp. 122–
133.

[6] O. Saukh, R. Sauter, M. Gauger, and P. J. Marrón, “On
boundary recognition without location information in
wireless sensor networks,” ACM Transactions on Sensor
Networks (TOSN), vol. 6, no. 3, p. 20, 2010.

[7] W.-C. Chu and K.-F. Ssu, “Decentralized boundary de-
tection without location information in wireless sensor
networks,” in 2012 IEEE Wireless Communications and
Networking Conference (WCNC). IEEE, 2012, pp. 1720–
1724.

[8] A. Dabba and R. Beghdad, “Bcp: A border coverage
protocol for wireless sensor networks,” in Science and
Information Conference (SAI), 2014. IEEE, 2014, pp. 632–
640.

[9] R. Beghdad and A. Lamraoui, “Boundary and holes
recognition in wireless sensor networks,” Journal of Inno-
vation in Digital Ecosystems, vol. 3, no. 1, pp. 1–14, 2016.

[10] L.-H. Zhao, W. Liu, H. Lei, R. Zhang, and Q. Tan,
“The detection of boundary nodes and coverage holes
in wireless sensor networks,” Mobile Information Systems,
vol. 2016, 2016.

[11] J. McLurkin and E. D. Demaine, “A distributed boun-
dary detection algorithm for multi-robot systems,” in
2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Oct 2009, pp. 4791–4798.

[12] W.-C. Chu and K.-F. Ssu, “Location-free boundary de-
tection in mobile wireless sensor networks with a dis-
tributed approach,” Computer Networks, vol. 70, pp. 96 –
112, 2014.

[13] B. Huang, W. Wu, G. Gao, and T. Zhang, “Recognizing
boundaries in wireless sensor networks based on local
connectivity information,” International Journal of Distri-
buted Sensor Networks, 2014.

[14] P. D. Hung, T. Q. Vinh, and T. D. Ngo, “An online
local boundary detection and classification algorithm for
networked multi-robot systems,” in 2016 International
Conference on Advanced Technologies for Communications
(ATC), Oct 2016, pp. 253–258.

[15] ——, “A scalable, decentralised large-scale network of
mobile robots for multi-target tracking,” in Intelligent
Autonomous Systems 13. Springer, 2014, pp. 621–637.

Pham Duy Hung received B.Sc. degree and
M.Sc. degree in Electronics and Telecommu-
nication from University of Engineering and
Technology (UET), Hanoi, Vietnam in 2003
and 2006, respectively. He is currently pur-
suing the PhD degree in Robotics at UET. His
research interests include distributed control
of multi-agent systems with emphases of de-
ployment, exploration, coverage, and multiple
target tracking.

Tran Quang Vinh is an Associate Professor at
the University of Engineering and Technology
(UET), Hanoi. He is currently the head of
department of Electronics and Computer En-
gineering. His interests include intelligent ro-
botics, fuzzy logics, sensor fusion, networked
robotics, computer architecture, instrumenta-
tion, and control engineering.

Trung Dung Ngo got Ph.D. degree in Electri-
cal and Electronic Engineering (Robotics), Aal-
borg University in 2008, M.Sc. degree in Com-
puter Systems Engineering (Robotics), Univer-
sity of Southern Denmark in 2004, and B.Sc.
degree from Vietnam National University, Ha-
noi in 2000. He is currently with the Univer-
sity of Prince Edward Island (UPEI) where he
is the founder and head of the More-Than-
One Robotics laboratory (www.morelab.org)
and the lead researcher of the Centre for Ex-

cellence in Robotics and Industrial Automation. Before joining UPEI,
he was the faculty member of the Department of Electronic Systems,
Aalborg University, and the Faculty of Science, University of Brunei.
His research interests include multi-robot systems, modular robotics,
and human-robot cooperation. He is an active member of IEEE.

