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Abstract– In this paper, the cooperative diversity is investigated in the uplink of a Code Division Multiple Access (CDMA)
network in which users cooperate by relaying each other’s messages toward the Base Station (BS). It is assumed that the
spreading waveforms are not orthogonal and hence, Multiple Access Interference (MAI) exists at the relay nodes as well as
the BS. MAI degrades the signal quality at both relays and BS and decreases the cooperative diversity gain. To alleviate this
problem, an Ant Colony Optimization (ACO) based Multi-User Detector (MUD) has been proposed to efficiently combine
the received signals from the direct and relay paths and sub-optimally extract transmitted bits at the BS. The computational
complexity of proposed algorithm is significantly lower than that of the Maximum Likelihood (ML) detector. More explicitly,
for a cooperative network supporting 15 users, the computational complexity of the proposed ACO algorithm is a factor
of 103 lower than that of the optimum Bayesian detector. Simulation results show that the performance of the proposed
ACO-based detector can closely approach the maximum diversity in terms of BER and efficiently cancel the MAI at the BS.
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1 Introduction

Recently, cooperative communication has been pro-
posed as a new technique to combat wireless channel’s
impairments, especially multipath fading [1, 2]. Using
this technique, single antenna terminals, acting in a
multiuser environment, exploit the broadcast nature of
the wireless channel to share the existing physical re-
sources, e.g. antennas, to form a virtual transmit and/or
receive antenna array [3–5]. Since each message may be
transmitted through independent different relay paths,
spatial diversity gain can be achieved without requiring
multiple antennas at each communication terminal.

Many cooperation strategies have been proposed
in the literature such as Decode-and-Forward (DAF),
Amplify-and-Forward (AAF) and coded coopera-
tion [3–9]. In the first case, each relay decodes its
source’s messages and then re-transmits them toward
the BS. In addition to cooperation strategies, the choice
of partner allocation strategy is one of the important
issues determining the performance of cooperative net-
works [4, 10].

CDMA is a common multiple access technique used
in cooperative networks [1, 2, 6–9]. However, when the
spreading waveforms adopted in CDMA networks are
not orthogonal, the MAI will be produced at the relays
as well as the BS, causing cooperative diversity gain to
degrade. Therefore, the MUD techniques must be em-
ployed to mitigate the MAI effect [3, 6–9, 11, 12]. In the
literature, several MUD techniques have been proposed
to eliminate the MAI effect in CDMA networks [10–

13]. Among them, the ML detector optimally minimizes
the error probability at the receiver side [11]. Recently,
a simple evolutionary search method, ACO, has been
modified to be utilized as an efficient low complexity
MUD technique [14, 15].

Some recent articles have addressed the MUD is-
sue in CDMA based cooperative networks. In [3, 7],
MMSE MUD technique has been modified to be used
in cooperative networks. It was shown that utilizing
the MMSE detector at both relay terminals and the
BS enhances the total network performance and hence,
the maximum cooperation diversity can be achieved.
Moreover, in [3], a Relay-Assisted Decorrelating MUD
(RAD-MUD) is proposed to separate interfering signals
at the destination with the help of precoding techniques
at the relays in conjugation with pre-whitening at the
destination. Also, the ML detector formulation for a
CDMA based cooperative DAF scenario has been de-
rived in [13]. However, the computational complexity of
the proposed ML detector grows exponentially as the
number of users in the network increases.

In this paper, a general cooperation scenario consist-
ing of independent direct and relay paths in a CDMA
based DAF scheme has been considered. An ACO-
based MUD technique has been proposed to efficiently
combine the received signals from the direct and relay
paths and sub-optimally extract transmitted bits at the
BS. The proposed algorithm significantly reduces the
computational complexity of the ML detector while
the BER performance does not degrade considerably.
Simulation results show that the proposed ACO-based
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detector efficiently decreases the MAI effect at the BS
and hence nearly approaches the second order diversity
bound for the cooperation scenario.

The rest of this paper is organized as follows. In Sec-
tion 2, the system model and cooperative protocol are
introduced. In Section 3, the formulation for maximum
likelihood multiuser detection is presented. Also, in this
section, the simplified ML detector is demonstrated.
In Section 4, the proposed ACO-based MUD is intro-
duced. The simulation results are presented in Section
5, and finally, the conclusion is given in Section 6.

2 System Model

A synchronous cooperative DS-CDMA network has
been considered with K users employing non-
orthogonal spreading codes with length N. The user
nodes of the network are indicated with the indices
k = 1, 2, . . . , K and the BS is represented with the index
k = K + 1. Also, it is assumed that each node is able
to simultaneously receive and transmit, and perfect
echo cancellation is performed at the relay nodes [7].
Moreover, every user as well as the BS are equipped
with a single antenna.

Let dk,q denote the distance between the kth and qth

users. In addition, corresponding fading coefficient hk,q
can be expressed as a circularly symmetric complex
Gaussian random variable whose variance is 1/(dk,q)

a,
where a denotes the path loss exponent [7]. Also, it is
assumed that the channel has slow fading character-
istics and does not vary during 2L successive symbol
intervals. Furthermore, it is assumed that the channel
has reciprocal property (i.e. hk,q = hq,k). In addition, it
should be pointed out that hk,k = 0.

Here, the case of DAF cooperation strategy is con-
sidered where each user can be assisted by a relay
node which relays its signal toward the BS. Let F =
{1, 2, . . . , K} be the set of present terminals in the
network. It is assumed that for each user index k ∈ F
a partner, named f (k) ∈ F, exists that provides the
secondary data link toward the destination. Here, bidi-
rectional cooperation is assumed where the partners
have to relay each other’s data. If a user is not able
to use the advantages of cooperation, without any loss
of generality, it can be considered that f (k) = k. In ad-
dition, in the network transmission scenario, each user
transmits only one new symbol per a couple of symbol
intervals and we suppose that cooperation occurs in
two consequent intervals as explained bellow [7]:
• During odd symbol intervals, each user transmits

its own information (utilizing its own spreading
code), which is received by the BS as well as the
partner.

• During even symbol intervals, each relaying node
retransmits a processed version of the information
received in the previous symbol interval using its
own spreading code.

The normalized transmitted symbol sequence of users
is shown by {bk(i), i = 1, 2, . . . , L}, k ∈ F. Hence,
the discrete time signal representation received at pth

Figure 1. Receiver structure at the BS.

terminal, p = 1, 2, . . . , K + 1 during the odd symbol
interval and at the BS during the even ones respectively
are given by [7] for i = 1, 2, . . . , L:

rp(2i− 1) =
K

∑
k=1,k 6=p

νk,pbk(i) + np(2i− 1), (1)

rK+1(2i) =
K

∑
k=1

ν f (k),K+1b̃k(i) + nK+1(2i), (2)

where νk,p =
√

ξkhk,pck is the filtered signature of the kth

user received at pth terminal, ξk denotes the kth user’s
symbol energy, ck is the N-dimensional normalized sig-
nature vector, b̃(i) represents the hard decision estimate
of bk(i) (for non-cooperating users, it can be written
as b̃(i)=bk(i)). Also, nK+1(2i) and np(2i − 1) are N-
dimensional circularly symmetric white Gaussian noise
vectors received at the BS and at pth terminal, respec-
tively [7]. Hereafter, an uncoded BPSK signaling with
unit amplitude will be considered, i.e., bk(i) ∈ {±1}.

As mentioned before, in DAF strategy each user
totally decodes and relays its partner’s symbols that
are received during odd intervals. Let f (q) ∈ F denote
the node of interest, then, the corresponding Matched
Filter (MF) receiver to estimate the bq(i) is given by
mq, f (q) = vq, f (q). If the output of the receiver’s MF
is expressed by Z ≡ mH

q, f (q)r f (q), then b̃q(i) can be
obtained by

b̃q(i) = sgn[<{Z}], i = 1, . . . , L. (3)

3 Maximum Likelihood Multiuser

Detection in Cooperative DAF Networks

Continuous time representation of the transmitted sig-
nal by kth user in one symbol duration can be expressed
by sk(t) =

√
ξkbkck(t) [14], where ck(t) is the continuous

time signature waveform of kth user with the correlation
matrix as follows

R = [ρi,j], ρi,j =
∫ Tb

0
ci(t)cj(t)dt (4)
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Thus, the transmitted signal of all users can be written
as

s(t) =
K

∑
k=1

sk(t) =
K

∑
k=1

√
ξkbkck(t) = CEb, (5)

where

C = [c1(t), . . . , ck(t)],

E = diag[
√

ξ1, . . . ,
√

ξK],

b = [b1, . . . , bk]
T .

Vector b consists of all users’ transmitted bits. There are
2K states for this vector corresponding to 2K different
combinations of user’s transmitted bits. Let denote
the jth combination of b as bj. Hence, the combined
transmit signal of all users is given by sj(t) = CEbj.
Therefore, the received signal at the BS can be expressed
as

r(t) =
K

∑
k=1

sk(t)hk,K+1 + n(t) = CHEb + n(t), (6)

where H = diag[hk,K+1, . . . , hK,K+1]. Define ‖r(t)‖2 =∫ Tb
0 |r(t)|

2dt.
As it is shown in Figure 1, the output of BS’s MF

bank can be expressed as

Z = [Z1, Z2, . . . , ZK]
T = RHEb + n,

where R is calculated by (4) and n = [n1, n2, . . . , nK]
T is

a zero mean Gaussian noise with a covariance matrix of
Rn = 0.5N0R. As it was mentioned in section 2, in the
current cooperation scenario, the single bit transmission
completes in two consecutive symbol intervals. Thus,
for the sake of simplicity, the signals belonging to even
intervals are shown with a bar as •̄. Therefore, the
following equations can be written for the received
signal in even intervals

r̄(t) =
K

∑
k=1

s f (k)(t)h f (k),K+1 + n̄(t) = C̄H̄Ēb̄ + n̄(t), (7)

wheer

C̄ = [c f (1)(t), . . . , c f (K)(t)],

Ē = diag[ξ f (1), . . . , ξ f (K)],

H̄ = diag[h f (1),K+1, . . . , h f (K),K+1],

b̄ = [b̃1, . . . , b̃K]
T .

Using the above expressed formulas, the ML criterion
can be given by [13]

b̂ = arg max
bj

[P(r(t)|sj(t))P(r̄(t)|sj(t))], (8)

where b̂ is the optimal combination for detection of
the network users’ transmitted bits. Therefore, ML
optimization criterion has two parts: the direct path
P(r(t)|sj(t)) and the relay path P(r̄(t)|sj(t)). Also, as
r(t) is a Gaussian distributed random variable, the for-
mer term has the probability distribution function [13]
given by:

P(Z|s) = exp
{
− 1

2σ2

∫ Tb

0
|r(t)− s(t)|2dt

}
= exp

{
− 1

2σ2

∫ Tb

0

∣∣∣r(t)− K

∑
k=1

√
ξkck(t)bkhk,K+1(t)

∣∣∣2dt
}

= exp
{
− 1

2σ2

(
‖r(t)‖2 − 2<[bTEH∗Z]− bTEHRH∗Eb

)}
.
(9)

For the latter term, the following consideration should
be taken into account. In even symbol intervals, there
are 2K possible combinations of b̄ due to the possible
reception error in any of the data bits of b̄. Let show
these combinations by b̄m. It is assumed that bj and
b̄m are related to each other by a diagonal transition
matrix Ψm,j which is defined as b̄m = Ψm,jbj, where
Ψm,j = diag(b̄m)/ diag(bj) is a K × K diagonal matrix
of which the kth diagonal element is given by

Ψm,j(k, k) =

{
+1, if bj(k) = b̄m(k),
−1, if bj(k) 6= b̄m(k).

(10)

It should be noted that for a given bj, there would be 2K

different Ψm,j for m ∈ {1, 2, . . . , 2K}. In the rest of this
paper, the j superscript is dropped in Ψm,j for simplicity.

Consider that subset A of F consists of all relays
which receive their partner’s transmitted symbol cor-
rectly at a given bit interval, that is,

∀ f (k) ∈ F
iff Ψm( f (k), f (k))=+1−−−−−−−−−−−−→ f (k) ∈ A.

Also, subset B of F is made up of all relays that
receive their partner’s symbol incorrectly in that given
transmission interval, that is,

∀ f (k′) ∈ F
iff Ψm( f (k′), f (k′))=+1−−−−−−−−−−−−−→ f (k′) ∈ B.

It is obvious that users who do not always cooperate
will be located in subset A. Actually, it can be inferred
that A and B are a partition of F . Thus, there are 2K

different states for A and B over F.
According to (10), probability that Ψm occurs is equal

to

P(Ψm) =
f (K)

∏
f (k)=1
f (k)∈A

(
1− Pf (k)

) f (K)

∏
f (k′)=1
f (k′)∈B

Pf (k′) (11)

Consequently, for calculation of the second term of
(8), there are 2K terms corresponding to all possible
combinations of bit decoding for K relays. Also, the
weight of each combination equals to its correspond-
ing transition matrix probability. Hence, probability of
s̄(t) = s̄m(t) = C̄ĒΨmbj is given by Equation (12).
Thus, from [13], the second term in (8) can be expressed
as in Equation (13). Then, the maximum likelihood
criterion for optimal multiuser detection will be given
by Equation (14).

The best solution in the sense of ML criterion for
the cooperative DAF network is obtained through the
following estimation b̂ = arg(maxb[Ω(b)]) employ-
ing (14). The ML formulation, expressed in (14), would
be used as ACO-algorithms fitness function. However,
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P(s̄m(t)|sj(t)) =
f (K)

∏
f (k)=1
f (k)∈A

(
1− Pf (k)

) f (K)

∏
f (k′)=1
f (k′)∈B

Pf (k′) = P(Ψm). (12)

P[Z̄|s̄] = exp
{
− 1

2σ2

∫ Tb

0
|r̄(t)− C̄ĒΨmb|2dt

}
= exp

{
− 1

2σ2 (‖r̄‖
2 − 2<[bTΨmĒH̄∗Z̄]− bTΨmĒH̄R̄H̄∗ĒΨmb).

}
(13)

Ω(b) = exp
{
− 1

2σ2 (‖r(t)‖
2 − 2<[bTEH∗Z]− bTEHRH∗Eb)

}
×∑

Ψm

[
exp

{
− 1

2σ2 (‖r̄‖
2 − 2<[bTΨmĒH̄∗Z̄]− bTΨmĒH̄R̄H̄∗ĒΨmb)

}
P(Ψm)

]
(14)

as it can be seen, the number of additive terms (fol-
lowing ∑ sign) will increase exponentially when the
number of cooperating users increases. In fact these
terms will cause a considerable increase in the com-
putational complexity of the fitness function. As it will
be shown in the following subsection, there are only
K + 1 significant terms in this expression; therefore, the
fitness function can be simplified remarkably.

3.1 Fitness function simplification
It is assumed that a proper partner selection al-

gorithm has been employed and, as a result, the er-
ror probability of inter-user channels would be small
enough. Hence, in (11) if there is more than one user
in set B, the following approximation can be used

∏
f (n)∈B
i f |B|>1

Pf (n) ≈ 0.

Using this approximation, the number of summation
terms in (14) decreases from 2K to K + 1 terms. Without
loss of generality, it can be assumed that Ψl , where
l = 1, 2, . . . , K + 1, is the state transition matrix cor-
responding to the remaining terms. The lth member
of this set (l = 1, 2, . . . , K) is proportional to error
occurrence in the lth bit of b̄; therefore, Ψl is a K × K
diagonal matrix whose elements on the major axis are
one except the lth member. Also, the (K + 1)th member
of {Ψ} = {Ψl |l = 1, 2, . . . , K + 1} corresponds to the
error free reception of b̄ (i.e., ΨK+1 = IK×K). Conse-
quently, the probability distribution of Ψl occurrence
will be denoted as

P(Ψl) =


Pl

K

∏
f (q)=l
f (q) 6=l

(1− Pf (q)), l = 1, 2, . . . , K,

K

∏
f (q)=l

(1− Pf (q)), l = K + 1.

(15)

Ψm can be replaced by Ψl in (14) and, then, the
Simplified Maximum Likelihood (S-ML) criterion can
be obtained by maximizing expression (16).

As it can be seen, the number of additive terms is
decreased from 2K terms in (14) to K + 1 terms in (16).

Here, for simplicity, (16) is used as the fitness function
of the ACO algorithm given in the following section.

4 ACO Algorithm

ACO is an efficient evolutionary search technique to
solve optimization problems with discrete and finite
search space. This algorithm is based on artificially sim-
ulating the foraging behavior of natural ant colonies,
wherein every artificial ant leaves a pheromone vestige
which helps the other ants to find the shortest route to
the source of the food. The result behind this approach
is that there is more pheromones density in shorter
routs, which can lead to their higher selection prob-
ability. By invoking this property, ACO can be used in
CDMA based networks as an efficient nonlinear MUD
technique to sub-optimally estimate the maximal point
of the likelihood function as expressed in (14). This is
due to the simple structure of ACO search technique
that the ACO-based MUD not only approaches near
optimal ML performance, but also significantly reduces
the computational complexity of search process [15].

Considering the application of ACO-based MUD in
a BPSK modulated cooperative CDMA network sup-
porting K users, a so called route table with (2 × K)
elements can be defined as in Table I, where the first
row (bMF) represents the hard decision output of the
BS’s MF, and the second row (b′MF) is the comple-
ment of bMF. Therefore, all possible combinations of
transmitted vectors can be represented by means of
this table. Then, the ACO based MUD sub-optimally
finds the best answer among the 2K possible data bit
combinations using different selections of bMF(j) and
b′MF(j) for j = 1, 2, . . . , K.

In ACO-based MUD, the search procedure starts
from an initial stage corresponding to the hard decision
output of the BS’s MF (bMF). Afterward, at each iter-

Table I
Route Table

1 2 . . . K
1 bMF(1) bMF(2) . . . bMF(K)
2 b′MF(1) b′MF(2) . . . b′MF(K)
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Ω(b) ≈ exp
{
− 1

2σ2

(
‖r(t)‖2 − 2<[bTEH∗Z]− bTEHRH∗Eb

)}
×
[

K+1

∑
l=1

exp
{
− 1

2σ2 (‖r̄‖
2 − 2<[bTΨl ĒH̄∗Z̄]− bTΨl ĒH̄R̄H̄∗ĒΨlb)

}
P(Ψl)

]
(16)

ation, the pheromone concentration will be updated in
order to find the optimum solution for likelihood func-
tion maximization problem. For simplicity, a Pheromone
Table (PT) with (2× K) elements can be defined which
contains the pheromone density in each path in the
route table. Here, a desirability function is introduced
which can help the artificial ants whether to select bMF
or its complement b′MF. The value of this function is
inversely proportional to the amplitude of MF’s soft
output as [14].

Di(j) =
1

2 + |z(j)|+ ∑l∈Ci
|z(l)|

j = 1, . . . , K, (17)

where Di(j) is the desirability function at the jth el-
ement in the bMF vector for ith ant, |z(j)| represents
the absolute value of MF’s soft output at the jth ele-
ment, and Ci is the set of bits where the ith ant had
previously deviated from the MF output (bMF) since
the start of its movement (sti). This equation prevents
the ant’s significant deviation from the initial solution
introduced by bMF. Therefore, the selection probability,
pi(j), of b′MF(j) can be defined as

pi(j) = PT(2, j)× D(j), ∀i = 1, 2, . . . , P, (18)

where N is the number of ants. To enhance the per-
formance of the ACO-based MUD algorithm, the start
point of each ant’s movement (sti) can be chosen
randomly at each iteration. In addition, pheromone
deposition and evaporation are done based on tra-
versed paths (Tr) by the ants at each iteration. Tri
has the same dimensions as the route table in which
the other elements are 0. Selection of Deposition Rate
(DR) and Evaporation Rate (ER) significantly affects
the performance of the ACO-based MUD algorithm.
Clearly at each iteration, the higher the pheromone
value in PT results in the greater selection probability
of corresponding path. In addition, elitism is employed
to improve the performance of ACO-based MUD algo-
rithm where only those ants with the highest value of
likelihood function (the set M) are permitted to deposit
pheromone along their traversal path. Therefore, the
pheromone deposition and evaporation procedure at
each iteration is formulated as follows [14]:

PT = (PT + DR× ∑
i∈M

Tri)× (1− ER) (19)

After a predetermined number of iterations (Y), the
operation of ACO-MUD completes. Hence, the belite in
that iteration is the final estimate of user’s transmitted
data. In ACO based MUD, P ants perform ACO for
Y iterations; therefore, the total number of likelihood
function evaluations is P × Y while it is 2K in the
ML method. Therefore, the computation complexity

Start
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y=Y?

Solution found

move=1

No

Path Selection for each 
Ant, with probability:

pi(move)

Save selected bit b(i)

Save i’th Ant trail (Tri)

move=move+1

End

Initialize each Ant’s 
Start Point

{st1,st2,…,stP}

y=y+1

Y= Maximum Number of  
Generations

y= current iteration index
K=Number of users
move= I’th movement of 

Each Ant

Is
move=K?

No

Is
Ω(bi) ≥ Ω(bMF)?

Yes

Phromone Deposite
(by i’th Ant )

Phromone 
Evaporation

No

Yes

belite=bMF

Is 
Ω(bi) ≥ Ω(belite)?

YesNo

belite=bi Yes

Figure 2. ACO algorithm’s flowchart.

of ACO-based MUD is only a small fraction of ML
method especially when K is high. Figure 2 shows the
overall operational flowchart of the employed ACO-
Based MUD algorithm.

5 Simulation Results

In this section, simulation results for performance
evaluation of the proposed methods are presented. A
DS/CDMA network has been considered which uses
m-sequences spreading codes with length N = 15.
The path loss exponent is considered to be a = 3.
It is also assumed that the power density of noise
is equal at all relay terminals as well as at the BS
(N1 = N2 = · · · = NK+1). Therefore, the SNR in
the network simulations is γ ≡ ξKE[|hk,K+1|2]/NK+1.
In Addition, all users are assumed to transmit equal
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Figure 3. The comparison of the BER performance of different
detectors at the Base Station of cooperative network.

powers, i.e. ξ1 = ξ2 = · · · = ξK. The BER performance
was obtained by averaging the simulation results over
almost 100 000 channel realizations.

The partner selection strategy, used in this network,
is based on the proposed strategy in [7]. In this strat-
egy, each terminal monitors the average signal power
received from other users and then, compiles and sorts
a list of strong neighbors which can take the role of
potential relays. Based on the received neighbor lists,
BS starts with the user with the worst uplink channel
state and tries to allocate a partner to each user.

The following parameter settings have been used for
the ACO-based MUD: P = 6, Y = 20, DR = 0.15
and ER = 0.05. The simulation results for simplified
optimum multiuser detection (S-ML) strategy will be
evaluated for a network with K = 10 users. For com-
parison, theoretical bounds for diversity orders of one
and two have been also presented as a benchmark [16].

The BER performance of the proposed ACO based
MUD in cooperative CDMA network is presented in
Figure 3. In this figure, the BER curve of S-ML algo-
rithm is also depicted for the sake of comparison. It is
assumed that the relay nodes are merely interested in
their partner’s transmitted bit and also they utilize MF
detector because of their limited processing capability.
As it is seen, when MF detector is employed at the BS
besides the efficient partner selection, the network per-
formance is better than the first order diversity, but it is
quite far from the second order diversity performance.
It is interesting that when the MUD techniques are
employed at the BS, the BER performance of total net-
work will approach the second order diversity results.
As it can be seen in Figure 3, the ACO-based MUD
performance nearly approaches the S-ML curve which
is very close to the theoretical second order diversity
bound while the complexity of the former is only a
fraction of the latter case.

The performance of ACO-based MUD completely
depends upon the choice of parameters. In Figure 4, the
BER performance of the proposed ACO-based MUD

Figure 4. BER versus number of iterations in SNR=8dB.

Figure 5. Complexity per transmitted signal per user versus the
number of users of the DS-CDMA system employing N = 31 m-
sequence codes.

algorithm is presented for SNR=8dB versus the number
of iterations. As it seems, the BER curve can totally
approach S-ML performance, if sufficient number of
iterations have been passed. In addition, the more the
number of artificial ants is, the faster and more accurate
convergence of the ACO algorithm is achieved.

In Figure 5, the computational complexity of pro-
posed ACO-based MUD algorithm for a two phase
cooperative Network has been compared with some
other prevalent techniques. It can be seen that in ML
based algorithm similar to the Bayesian detector, the
computational complexity exponentially increases as
the number of users increases. On the contrary, while
the ACO or MF based detectors are employed, the
computational complexity increases linearly. To express
more quantitatively, for the case where the number
of users reaches 15, the computational complexity of
the ACO algorithm is less than 0.1% of the optimum
Bayesian detector.

6 Conclusion

The ACO-based MUD has been proposed for the up-
link of a CDMA based cooperative DAF scenario. To
reduce the computational complexity, the likelihood
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function has been simplified to be employed as the
fitness function of the ACO algorithm which can be
easily generalized to an arbitrary cooperation scenario
by manipulating a few changes. Using the proposed
detector, the BS will be able to sub-optimally extract
transmitted bits using the signals received from both
direct and relay paths. Simulation results show that
the BER performance of the ACO-based MUD, in a co-
operative scenario, closely approaches the performance
bounds of the second order diversity at significantly
lower computational complexity compared to the ML
method. More explicitly, for a cooperative network
supporting 15 users, the computational complexity of
the proposed ACO algorithm is a factor of 103 lower
than that of the optimum Bayesian detector.
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