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Abstract– This paper proposes a method of artifact reduction in compressed videos using dynamic texture map together
with artifact maps and 3D - fuzzy filters. To preserve better details during filtering process, the authors introduce a novel
method to construct a texture map for video sequences called dynamic texture map. Then, temporal arifacts such as flicker
artifacts and mosquito artifacts are also estimated by advanced flicker maps and mosquito maps. These maps combined
with fuzzy filters are applied to intraframe and interframe pixels to enhance compressed videos. Simulation results verify
the advanced performance of the proposed fuzzy filtering scheme in term of visual quality, SSIM, PSNR and flicker metrics
in comparision with existing state of the art methods.
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1 Introduction

Video traffic is increasing dramatically fast. As in a
study from Cisco [1], video traffic will achieve over 81%
of the global traffic by year 2021. So, the requirement
of compressing videos to reduce storage space and
channel bandwidth is inevitable. There are many block-
based compression standards such as JPEG, MPEG,
H.26x, etc. to meet this requirement. However, these
lossy compression methods suffer from spatial artifacts
(blocking and ringing) and temporal artifacts (mosquito
and flickering) ([2, 3]), especially at low bit rates.
Blocking artifacts occur when the neightboring blocks
are compressed independently. Beside that, the coarse
quantization and truncation of high-frequency Discrete
Cosine Transform (DCT) coefficients cause ringing ar-
tifacts. In interframe coding, at the borders of moving
objects, the interframe predicted block may contain a
part of the predicted moving object. The prediction
error sometime is large and can cause mosquito arti-
facts. The authors in [4] and [5] introduce a method of
flicker detection and reduction, however this method
requires the original frames which are not available at
the decoder.

Artifacts cause uncomfortableness to human visual
perception. Hence, artifact removal becomes a very
essential task. In general, image and video quality
enhancement techniques can be implemented either at
encoding side or decoding side. Enhancement methods
at the encoding side ([6] and [7]) are not compatible

to the existing video or image compression standards.
Therefore, postprocessing techniques at the decoding
side have received much more attention due to its
compatibility to existing compression standards.

At the decoding side, Chen [8] proposes a method of
image enhancement in the transform domain. In this
method, the block DCT coefficients of shifted blocks
are used to increase inter-block correlation. The fil-
ter window sizes adapt to the transform coefficients
of classified blocks having low or high activities. In
particular, a large window is utilized to efficiently
smooth out blocking artifacts for low activity areas,
while a smaller window is activated in high activity
areas to keep the details. Furthermore, the authors in [9]
introduce a blind measurement method of blocking
artifacts. Based on the artifact level, an adaptive filter
is then used to reduce blocking artifacts. In most mul-
timedia post processings, video coding information is
not available. In another research, the authors in [10]
propose a quantization amount estimation method and
then remove the ringing and mosquito artifacts in
compressed video sequences by using spatio-temporal
filtering. Recently, convolutional neural network (CNN)
methods are applied to enhance image and video qual-
ity ([11] and [12]). CNNs are trained with original
and compressed images and show to obtain rather
good performance. However, the disadvantages of these
methods is that it can create artificial details.

Enhancing image and video while preserving their
details is very important. Thus the authors in [2], [13],

1859-378X–2019-3403 c© 2019 REV



46 REV Journal on Electronics and Communications, Vol. 9, No. 3–4, July–December, 2019

[14], [15], [16], and [17] use edge maps ([17] and [18]) to
adapt filters’ strength. However, the pixel classification
is rather complicated and may lead to error. This can
cause image details lost during filtering process. To
better improve quality, accurate detection of image and
video details is an unavoidable requirement. Image seg-
mentation methods for locating texture are introduced
in [19], [20], [21], and [22]. The authors in [23] use the
enhanced Beltrami method to construct image texture
maps. For the first time, the authors in [2] and [16]
utilize the texture map together with fuzzy filters to
remove blocking and ringing artifacts in compressed
images. According to the best knowledge of the au-
thors, texture maps for compressed video sequences
still have not been studied.

In this paper, a novel method is proposed to enhance
compressed video sequences. At first, a texture map
of the compressed video sequence called the dynamic
texture map is constructed. Then temporal artifact maps
such as the flicker map and the mosquito map are
estimated. The dynamic texture maps together with
temporal artifact maps are used to control the fuzzy
filters’ strength. The remainings of this paper are or-
ganized as follows. Section 2 describes 3D-fuzzy filter.
Section 3 constructs dynamic texture map. Section 4 in-
troduces artifact maps of compressed video sequences.
Video enhancement using dynamic texture and artifact
maps is presented in Section 5. Simulation results and
conclusions are shown in Section 6, and Section 7,
respectively.

2 3D-Fuzzy Filters

3D-fuzzy filters are used to remove artifacts while pre-
serving details of video frames. A 3D-fuzzy filter in [3]
is applied to the input compressed video sequence I to
formulate the output video sequence I′ as

I′(x, y, t) =
∑

m,n,k∈Ω
h(m, n, k)× I (x + m, y + n, t + k)

∑
m,n,k∈Ω

h(m, n, k)
,

(1)

where Ω are the neighbours of the pixel of interest
I(x, y, t); h(m, n, k) = h(I(x, y, t), I(x + m, y + n, t + k))
is the response function of the 3D-fuzzy filter. The filter
response h(I(x, y, t), I(x + m, y + n, t + k)) must follow
the constraints as in (2), (3), and (4)

lim
|I(x,y,t)−I(x+m,y+n,t+k)|→0

h(m, n, k) = 1, (2)

lim
|I(x,y,t)−I(x+m,y+n,t+k)|→+∞

h(m, n, k) = 0, (3)

and
if |I(x, y, t)− I(x + m1, y + n1, t + k1)|

≥ |I(x, y, t)− I(x + m2, y + n2, t + k2)|,
h(I(x, y, t), I(x + m1, y + n1, t + k1))

≤ h(I(x, y, t), I(x + m2, y + n2, t + k2)).

(4)

Gaussian function is one of the functions that satisfies

the requirements in (2), (3), and (4)

h(I(x, y, t), I(x + m, y + n, t + k))

= exp
(
− (I(x + m, y + n, t + k)− I(x, y, t))2

2σ2(m, n, k)

)
, (5)

where the σ(m, n, k) spread parameter of the Gaussian
function adapts the strength of the 3D-fuzzy filters
at different activity levels such as smooth or detail
areas [2, 3].

3 Dynamic Texture Maps

Dynamic texture maps are constructed by classifying
pixels based on their texture features. Pixels in the
texture map are generally classified as strong edges,
weak edges, strong texture, weak texture and flat areas.
To be consistent to YUV decoded output during de-
compression, decompressed RGB video frames is first
converted to YUV frames. At the decoding side, texture
features of compressed video sequences are calculated
as follows.

Let W be a cubic window of (2M + 1)× (2N + 1)×
(2K + 1) pixels and I(x, y, t) is the luminance value
of the center pixel of W, where M, N, K are integer
number. The texture map is constructed based on the Y
component of pixels in video sequences. The Y compo-
nent of pixels creates < curve in the three-dimensional.
Euclid distances of pixel values ([19]) in < curve are
calculated as in (6).

ds2 = dx2 + dy2 + dt2 + dI2

= dx2 + dy2 + dt2 +
(

Ixdx + Iydy + Itdt
)2

=
(
1 + I2

x
)

dx2 +
(

1 + I2
y

)
dy2 +

(
1 + I2

t
)

dt2

+2Ix Iydxdy + 2Iy Itdydt + 2It Ixdtdx.
(6)

The feature matrix is defined as in (7)

gxyt =

 1 + I2
x Ix Iy Ix It

Iy Ix 1 + I2
y Iy It

It Ix It Iy 1 + I2
t

 . (7)

Let Ix, Iy, It be partial derivatives along x, y, and t
directions in the cubic window W. These derivatives
are calculated as in (8), (9) and (10)

Ix =

√√√√√ M
∑

m=−M

N
∑

n=−N

K
∑

k=−K
[W (m + 1, n, k)−W (m, n, k)]2

(2M + 1)× (2N + 1)× (2K + 1)
(8)

Iy =

√√√√√ M
∑

m=−M

N
∑

n=−N

K
∑

k=−K
[W (m, n + 1, k)−W (m, n, k)]2

(2M + 1)× (2N + 1)× (2K + 1)
(9)

It =

√√√√√ M
∑

m=−M

N
∑

n=−N

K
∑

k=−K
[W (m, n, k + 1)−W (m, n, k)]2

(2M + 1)× (2N + 1)× (2K + 1)
(10)

The texture feature of video sequences is defined
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in [17] as in( 11)

F(x, y, t) = exp

(
−

det
(

gxyt
)

δ2

)
, (11)

where δ is a scaling parameter. Pixel classification is
determined based on the texture feature value as in (12).
Classification thresholds is experientially selected and
dynamic texture map quality bases on subjective as-
sessment of observers. These thresholds determine the
accuracy of the dynamic texture map, so they influ-
ence to preserve details of video frames when video
enhancement is implemented by the 3D-fuzzy filters.

Pel-type =

=



Strong− edge F(x, y, t) < 10−4

Weak− edge 10−4 ≤ F(x, y, t) < 8.10−3

Strong− texture 8.10−3 ≤ F(x, y, t) < 0.5
Weak− texture 0.5 ≤ F(x, y, t) < 0.95

Flat otherwise.
(12)

Figure 1 shows an example of the dynamic texture
map of Mobile video sequence. Colors of the texture
map are defined as follows. Red: strong edge; Green:
weak edge; Blue: strong texture; Yellow: weak texture;
Others: flat. Figure 1(a), Figure 1(b), Figure 1(c), and
Figure 1(d), respectively are the original frame, the
dynamic texture map of the original frame, the MJPEG
compressed frame, and the dynamic texture map of
the MJPEG compressed frame. Visually, the dynamic
texture maps show acurately the details of video frames
in classifying strong edge, weak edge, strong texture,
weak texture, and flat areas. As can seen in Figure 1(b)
and Figure 1(d), the dynamic texture map of original
frame are more accurate details than that of compressed
frame. Figure 2 and Figure 3 show the MJPEG com-
pressed frames and their texture maps.

4 Artifact Maps of Compressed Video

Sequences

4.1 Flicker Maps

Flicker artifact is a temporal artifact that causes
annoyance feeling of viewers. Flicker artifacts occur
as the sudden luminance value changes of the co-
located pixels between two consecutive frames. This
subsection introduces a novel method of constructing a
flicker map. The original video frames usually are not
available at the decoding side, so this paper proposes to
use compressed video frames to estimate flicker maps.
This method compares luminance difference of the co-
located pixels in neighbour compressed video frames
to determine flickering pixels.

The proposed method only uses the Y component of
the pixels to construct the flicker maps. Let I(x, y, t) be
luminance value at position (x,y) in tth frame, I

′
(x, y, t−

1) be the corresponding reconstructed pixel in previous
frame (x = 1, · · · , H; y = 1, · · · , D, where H and D
respectively are the height and width of the video

(a) (b)

(c) (d)

Figure 1. An example of the dynamic texture map. (a) Original frame;
(b) the dynamic texture map of the original frame; (c) the MJPEG
compressed frame; (d) the dynamic texture map of the MJPEG
compressed frame.

(a) (b)

Figure 2. The 5th frame of Foreman video sequence. (a) the MJPEG
compressed frame; (b) the dynamic texture map.

(a) (b)

Figure 3. The 5th frame of Tempete video sequence. (a) the MJPEG
compressed frame; (b) the dynamic texture map.

frame). The authors define the luminance difference of
two co-located pixels between two consecutive frames
as in (13).

∆τ
x,y =

∣∣∣I(x, y, t)− I
′
(x, y, t− 1)

∣∣∣ (13)

Assume that a number of frames consider to be an
even integer 2n, τ = 1, · · · , 2n− 1.

Let τc = b τ
2 c. If max (∆τ

x,y) < ∆τc
x,y (τ 6= τc) then

I(x, y, τc) is the gap pixel and considered as flicker
artifact pixel. Therefore, based on neighbour frames, the
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∆1
x,y ∆2

x,y ∆3
x,y ∆4

x,y ∆5
x,y

Figure 4. Different luminance values of the co-located pixels.

(a) (b)

Figure 5. Flicker map of the 5th frame in Foreman video sequence.
(a) Coded frame; (b) Flicker map.

(a) (b)

Figure 6. Flicker map of the 5th frame in Mobile video sequence.
(a) Coded frame; (b) Flicker map.

(a) (b)

Figure 7. Flicker map of the 12th frame in the zoomed ReadySteadyGo
video sequence. (a) Coded frame; (b) Flicker map.

tτc frame is used to construct the flicker map. Similarly,
process is repeated to estimate the flicker maps for
a whole compressed video sequence. Figure 4 is an
example of the proposed method when constructing a
flicker map with neighbour frames of 2n = 6.

Figure 5 shows an example of flicker map of the
5th frame in Foreman video sequence, where red color
is flicker artifact pixels. Figure 5(a) and Figure 5(b),
respectively are the coded frame and the flicker map.
Similarly, Figure 6 and Figure 7 are the flicker maps in
Mobile and ReadySteadyGo video sequences. As can
be seen in these results, flickering pixels appear many
at borders of edges due to the quantization errors and
the predictive errors of blocks during encoding video
sequences.

(a) (b)

Figure 8. Mosquito map of the 5th frame in Mobile video sequence.
(a) Coded frame; (b) Mosquito map.

(a) (b)

Figure 9. Mosquito map of the 5th frame in YachtRide video sequence.
(a) Coded frame; (b) Mosquito map.

4.2 Mosquito Maps

Predictive errors of blocks along the border of mov-
ing objects create mosquito artifacts. So, neighbour
pixels of moving object borders are considered as po-
tential mosquito artifacts. To determine moving object
borders, the authors define a border block content that
contains at least one pixel of the border edges. If there
is a relative motion between a border block and its
neighbour blocks, it is considered as a border block of
moving objects.

Let MVc be a motion vector of the border block, MV l
nb

be the motion vectors of the neighbour blocks of the
border block (l = 1, · · · , 8). The distance between the
border block and its lth neighbour block is calculated
as in (14)

dl =
∥∥∥MV l

nb −MVc

∥∥∥
2
, (14)

where ‖.‖2 is norm-2. If any dl value is greater or equal
to 1 then it is considered as the border block of moving
objects. So, the neighbour pixels of this border block but
the moving object pixels are estimated the mosquito
pixels. Figure 8 shows an example of mosquito map
of the 5th frame in Mobile video sequence, where
blue color is mosquito artifact pixels. Figure 8(a) and
Figure 8(b), respectively are coded frame and mosquito
map. Similarly, Figure 9 is the mosquito map of the 5th

frame in YachtRide video sequence. As can be seen in
these results, potential mosquito pixels follow at the
moving object borders. That shows the mosquito map
of the proposed method is suitable for characteristic of
the mosquito artifact pixels.

5 Video Enhancement using Dynamic

Texture Maps

Compressed video enhancement is the target of this
paper. The authors propose a novel method to combine
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Compressed video input

Dynamic texture
map construction

Flicker map and mosquito
map construction

Spatial artifact removal

Motion estimation and
motion compensation
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artifact?

3D-fuzzy filter
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artifact?

3D-fuzzy filter
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edge?

3D-fuzzy filter
σ = σ3

Strong
texture?

3D-fuzzy filter
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No
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No

Yes

No

Yes

No

Yes

No

Figure 10. The flow chart of the proposed video enhancement
method.

dynamic texture maps, temporal artifact maps, and
3D-fuzzy filters to remove artifacts. Dynamic texture
maps is used to control strength of 3D-fuzzy filters
at every pixel in compressed video sequences. Fig-
ure 10 shows the flow chart of the proposed video

enhancement method. The input of this scheme is a
compressed video sequence, which suffers from spatial
artifacts and temporal artifacts. Video enhancement
implements both spatial and temporal domains. Spa-
tial filtering removes blocking and ringing artifacts in
every frame. Temporal filtering removes flicker and
mosquito artifacts in coded videos. The authors in [2]
propose methods of removing spatial artifacts based
on texture maps, spatial artifact maps, and 2D-fuzzy
filters. However, spatial artifact removal may smooth
out and distort the details in compressed video frames.
Estimation of the dynamic texture map, flicker map,
and mosquito map based on the video after spatial
artifact enhancement is able to cause exactly missing.
Therefore, the paper proposes to construct these maps
based on coded videos. As mentioned in Section 3
and Section 4, dynamic texture maps, flicker maps,
and mosquito maps are constructed from compressed
video input. In this paper, motion vector estimation
and motion compensation is implemented to further
increase the correlation of neighbour pixels. Pixels are
classified into flicker artifact, mosquito artifact, strong
edge, weak edge, strong texture, weak texture, and flat.
The strength of 3D-fuzzy filters corresponding with
types of pixels in filtering process are controlled by
the spread parameters {σ1, σ2, σ3, σ4, σ5, σ6, σ7}. These
parameters are experientially selected to adapt filters’
strength based on the dynamic texture map. If the pixel
is a mosquito pixel, it is filtered by a 3D-fuzzy filter
with σ1 value to remove the mosquito artifacts. Else if
the pixel is a flicker pixel, it is filtered by a 3D-fuzzy
filter with σ2 value to remove the flicker artifacts. Next,
depending on the texture types (which are weak edges,
strong texture, weak texture, and flat), corresponding
the 3D-fuzzy filters with different spread parameters
are applied to remove artifacts while preserving de-
tails of video frames. The spread parameter values are
ranged from the highest values σ1 and σ2 for mosquito
and flicker areas to the lowest value σ7 for flat areas,
corresponding to the strongest filtering level to the
weakest filtering level.

To adapt to different areas having different activity
levels, the amplitude of the spread parameter to control
the strength of the 3D-fuzzy filters is defined ([2]) as
in (15)

σ (x, y, t) = σi

(
(1− γ)

(
Fmax − F (x, y, t)

Fmax − Fmin

)
+ γ

)
,

(15)
where Fmin and Fmax are minimum and maximum
values of all F(x, y, t) values defined as in (11), γ is
a scaling factor in [0, 1], and σi (i = 1, ..., 7) is the
selected spread parameter value. The parameters in [2]
are selected as α=0.5, β=3.5 and γ=0.5.

6 Simulation Results

To validate the effectiveness of the proposed method,
MATLAB programs are implemented to stimulate the
results on a computer with Intel(R)Core(TM)i7-8550U
CPU@1.8 GHz up to 4 GHz and RAM of 8 GB.
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Table I
PSNR Comparison of the Proposed Method for MJPEG Video

Sequences

Sequences MJPEG Chen Liu MCSTF CNN Proposed

Highway 31.5952 31.7564 31.6935 32.3826 31.3481 32.5535

Silent 29.5057 30.0548 29.8812 29.8099 28.6818 30.4979

Mother 32.8453 33.4530 33.2049 33.4878 33.7641 34.1748

Foreman 29.6542 30.0627 29.9964 30.6263 29.1103 31.0253

Mobile 23.2985 23.1300 23.2383 23.4489 24.1733 24.0169

Bridge-far 31.2002 31.3582 31.3883 31.7274 29.3216 31.9052

Tempete 25.4873 25.7231 25.6077 25.4210 26.1018 26.1642

Bridge-
close

27.8246 27.8812 27.8964 27.6414 24.7826 28.4391

Hall 30.4926 30.2846 30.3200 30.2465 31.4891 31.3879

Bosphorus 34.3488 35.0894 34.7790 35.0636 34.8794 35.5651

HoneyBee 32.4267 33.1781 33.1987 33.9100 32.8354 33.9018

ReadyStea-
dyGo

31.5391 32.1103 31.7610 31.7031 32.3285 32.3676

Averaged difference 0.3220 0.2289 0.4375 -0.1169 0.9818

Objective and subjective assessments based on PSNR,
SSIM [21], the flicker metric [3], and the visual qual-
ity are used to compare video enhancement methods.
Averaged value of each quality index in successive
frames are also calculated. Many original video se-
quences with different resolutions are compressed with
MJPEG and H.265 standards, and then enhanced by
many different methods. Chosen video sequences with
resolutions of 352×288 (Highway, Silent, Mother, Fore-
man, Mobile, Bridge-far, Tempete, Bridge-close, and
Hall) and 1920×1080 (Bosphorus, HoneyBee, ReadyS-
teadyGo, YachtRide, and Beauty) are used to stimu-
late and compare the results of enhacement methods.
Spread parameters of 3D-fuzzy filters in Figure 10 are
experimently selected as σ1 =16, σ2 =16, σ3 =12, σ4=11,
σ5 =11, σ6 =10, σ7 =8, and σ8 =12. Filter window of the
3D-fuzzy filter in this paper is proposed to be 3×3×5.
Details are shown in two subsection as follows.

6.1 Enhancement for MJPEG Encoded Video
Sequences

The original video frames are compressed with
MJPEG standard, which do not consider temporal cor-
relation. Table I, Table II, and Table III, respectively
show the comparision in PSNR values, SSIM values,
and the flicker metric values among the proposed
method, Chen [8], Liu [9], MCSTF [3], and CNN [11].
The averaged PSNR improvement values of the Chen
method, the Liu method, the MCSTF method, the CNN
method, and the proposed method over the MJPEG
encoded video sequences are +0.3220 dB, +0.2289 dB,
+0.4375 dB, -0.1169 dB, and 0.9818 dB, respectively.
The averaged SSIM improvement values of the Chen
method, the Liu method, the MCSTF method, the CNN
method, and the proposed method are +0.0130, +0.0073,
-0.0036, +0.0295, and +0.0261, respectively. The aver-
aged flicker metric improvement values of the Chen
method, the Liu method, the MCSTF method, the CNN

Table II
SSIM Comparison of the Proposed Method for MJPEG Video

Sequences

Sequences MJPEG Chen Liu MCSTF CNN Proposed

Highway 0.8259 0.8483 0.8385 0.8542 0.8576 0.8647

Silent 0.8176 0.8267 0.8186 0.7871 0.8372 0.8384

Mother 0.8697 0.8872 0.8776 0.8679 0.8985 0.8960

Foreman 0.8130 0.8363 0.8285 0.8372 0.8516 0.8509

Mobile 0.8302 0.8216 0.8263 0.8126 0.8774 0.8630

Bridge-far 0.7488 0.7714 0.7738 0.7775 0.7817 0.7799

Tempete 0.8400 0.8412 0.8381 0.8015 0.8717 0.8598

Bridge-
close

0.7702 0.7657 0.7648 0.7087 0.7786 0.7822

Hall 0.8550 0.8677 0.8632 0.8691 0.8937 0.8876

Bosphorus 0.8866 0.9048 0.8915 0.8756 0.9029 0.9027

HoneyBee 0.8862 0.9127 0.9058 0.9174 0.9208 0.9214

ReadyStea-
dyGo

0.8955 0.9113 0.9000 0.8863 0.9208 0.9049

Averaged difference 0.0130 0.0073 -0.0036 0.0295 0.0261

Table III
Flicker Comparison of the Proposed Method for MJPEG Video

Sequences

Sequences MJPEG Chen Liu MCSTF CNN Proposed

Highway 3.2291 3.2477 3.5684 3.188 3.9039 2.9907

Silent 7.0942 6.2600 6.6188 5.9567 7.9481 5.6088

Mother 0.5615 0.5874 0.5615 0.3957 0.8751 0.2623

Foreman 2.2877 2.1748 2.2930 2.1701 2.7972 1.8121

Mobile 3.1923 2.5145 3.2470 2.2008 3.0447 1.5207

Bridge-far 1.0169 1.0065 1.0546 0.9082 1.4470 0.8530

Tempete 2.1304 1.7345 2.1094 1.4376 2.2063 1.3085

Bridge-
close

2.3861 2.1964 2.4817 2.2325 3.1765 1.7577

Hall 3.4817 3.4935 4.0280 3.0824 3.6551 2.9436

Bosphorus 0.2055 0.1835 0.2032 0.1665 0.2040 0.1495

HoneyBee 0.4621 0.3593 0.3748 0.2905 0.3513 0.2973

ReadySte-
adyGo

1.5646 1.2718 1.3365 1.0556 1.3355 1.0287

Averaged difference -0.2152 0.0221 -0.3773 0.2777 -0.5899

method, and the proposed method are -0.2152, +0.0221,
-0.3773, -0.2777, and -0.5899, respectively.

In comparison with the existing methods such as the
Chen method, the Liu method, the MCSTF method, and
the CNN method, the averaged PSNR improvement
value of the proposed method is +0.6598 dB, +0.7528
dB, +0.5442 dB, and +1.0986 dB, respectively; similarly,
the averaged SSIM improvement value of the proposed
method is +0.0131, +0.0187, +0.0297, and -0.0034; and
the averaged flicker metric improvement value of the
proposed method is -0.3748, -0.6120, -0.2126, and -
0.8677. The averaged PSNR improvement value of the
CNN method and the averaged SSIM improvement
value of the MCSTF method are smaller than those of
MJPEG encoded sequences. The averaged flicker metric
improvement value of the CNN method and the Liu
method are larger than that of MJPEG encoded se-



T. V. Nguyen et al.: Dynamic Texture Map Based Artifact Reduction for Compressed Videos 51

(a) (b)

(c) (d)

(e) (f)

Figure 11. The 10th frame of Mobile video sequence. (a) Compressed;
(b) Chen; (c) Liu; (d) MCSTF; (e) CNN; (f) The proposed method.

quences. This means these methods do not improve the
flicker metric of MJPEG encoded sequences. PSNRs and
the flicker metrics of the proposed method is improved
significantly more than those of other methods, SSIMs
of the proposed method is equivalent to those of the
CNN method and is improved better than those of
the other methods. Video enhancement of Chen, Liu,
and CNN methods only implements in single frame
based mode (called intraframe mode), so the flicker
metric of these methods is not consistent over frames.
The MCSTF method and the proposed method are
performed in single frame based mode and multi frame
based mode (called interframe mode) to remove both
spatial and temporal artifacts. Therefore, the flicker
metric of the MCSTF method and the proposed method
are much better than the other methods.

To evaluate the visual quality, the enhancement re-
sults of the different methods on the 10th frame of
the Mobile video sequence are shown on Figure 11
and Figure 12. As can be seen in these results, Chen
method result (Figure 12(b)) is blurry; the Liu method
result (Figure 12(c)) still has many ringing artifacts,
the MCSTF method introduces good result but many
details are lost (Figure 12(d)); the CNN method re-
sult (Figure 12(e)) and the proposed method result
(Figure 12(f)) improve quality better than the other
methods. However, according to Figure 13, the flicker
metric of the CNN method is not improved. Similarly,
the results of the 10th frame of the Foreman video

(a) (b)

(c) (d)

(e) (f)

Figure 12. The zoomed 10th frame of Mobile video sequence. (a)
Compressed; (b) Chen; (c) Liu; (d) MCSTF; (e) CNN; (f) The proposed
method.

Figure 13. Flicker metric comparision in Mobile video sequence.

sequence are shown on Figure 14 and Figure 15, where
the proposed method, the MCSTF method, and the
CNN method introduce the best qualities. However, the
result of the CNN method is color bleeding, the result
of the MCSTF method is lost many details.

In the MJPEG encoded video sequcence enhance-
ment, based on the above results, the proposed method
outperforms the other methods in term of PSNRs,
SSIMs (except the CNN method), the flicker met-
rics, and the visual quality. The SSIM value of the
CNN method and the proposed method are equavalent
each other.
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(a) (b)

(c) (d)

(e) (f)

Figure 14. The 10th frame of Foreman video sequence. (a) Com-
pressed; (b) Chen; (c) Liu; (d) MCSTF; (e) CNN; (f) The proposed
method.

Table IV
PSNR Comparison of the Proposed Method for H.265 Video

Sequences

Sequences H.265 Chen Liu MCSTF CNN Proposed

Highway 31.6271 30.9281 31.3742 31.8720 30.8110 31.8736

Mother 32.5383 32.6104 32.4123 32.4226 32.7943 32.7198

Foreman 30.0859 30.7423 30.4011 31.2270 29.2476 31.4596

Mobile 26.0222 23.1958 25.2848 24.9134 25.6546 25.8499

Bridge-far 31.5543 31.3683 31.4304 31.6530 29.4862 31.7308

Bridge-
close

27.5614 27.2508 27.4861 27.2326 24.4270 27.6360

Hall 29.8270 29.1281 29.3884 29.1417 30.0891 29.7552

Beauty 33.3822 33.4866 33.4464 33.5123 33.5496 33.5153

Bosphorus 36.2591 36.1707 35.6105 35.4355 36.0618 36.0361

Honey 32.8902 33.1216 33.0254 33.2205 33.1163 33.3114

ReadyStea-
dyGo

30.8218 30.8305 30.5702 30.5857 31.2092 30.9901

YachtRide 32.0129 32.1024 31.8633 31.9799 32.3608 32.1844

Averaged difference -0.3039 -0.1908 -0.1155 -0.4812 0.2067

6.2 Enhancement for H.265 Encoded Video
Sequences

H.265 standard is the lastest video encoding stan-
dard. In this subsection, the original frames are com-
pressed using this standard. The authors simulate dif-
ferent methods to enhance the H.265 video sequences.
The configuration parameters encoding the H.265 stan-

(a) (b)

(c) (d)

(e) (f)

Figure 15. The zoomed 10th frame of Foreman video sequence. (a)
Compressed; (b) Chen; (c) Liu; (d) MCSTF; (e) CNN; (f) The proposed
method.

dard are as follows: the prediction structure is IPP-
PIPPP, QP (Quality Parameter) is 38, and deblocking
and deringing filters are turn off. The objective simu-
lation results of the Chen method, the Liu method, the
MCSTF method, the CNN method, and the proposed
method are shown in Table IV, Table V, and Table VI,
respectively. The averaged PSNR improvement values
of the Chen method, the Liu method, the MCSTF
method, the CNN method, and the proposed method
are -0.3039 dB, -0.1908 dB, -0.1155, -0.4812 dB, and
+0.2067 dB, respectively. In comparison of the PSNR
value of the H.265 encoded video sequences, only
the proposed method provides improvement while the
other methods do not. The averaged SSIM improvement
values of the Chen method, the Liu method, the MCSTF
method, and the proposed method are -0.0001, -0.0027,
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Table V
SSIM Comparison of the Proposed Method for H.265 Video

Sequences

Sequences H.265 Chen Liu MCSTF CNN Proposed

Highway 0.8064 0.8085 0.8039 0.8237 0.8185 0.8233

Mother 0.8357 0.8379 0.8323 0.8285 0.8427 0.8394

Foreman 0.7741 0.8431 0.7809 0.8462 0.8577 0.8579

Mobile 0.8943 0.8097 0.8842 0.8426 0.8821 0.8842

Bridge-far 0.7522 0.7543 0.7544 0.7591 0.7577 0.7591

Bridge-
close

0.6943 0.6791 0.6860 0.6531 0.6861 0.6848

Hall 0.8451 0.8412 0.8423 0.8428 0.8624 0.8520

Beauty 0.7517 0.7574 0.7545 0.7571 0.7605 0.7571

Bosphorus 0.8975 0.8953 0.8802 0.8607 0.8816 0.8847

Honey 0.8716 0.8836 0.8786 0.8885 0.8894 0.8872

ReadyStea-
dyGo

0.8575 0.8617 0.8518 0.8496 0.8690 0.8629

YachtRide 0.8254 0.8332 0.8244 0.8300 0.8404 0.8353

Averaged difference -0.0001 -0.0027 -0.0020 0.0119 0.0102

-0.0020, +0.0119, and +0.0102, respectively. In compar-
ison of the SSIM value of the H.265 encoded video
sequences, the proposed method is slightly higher and
is in similar level with the CNN method while the
other methods are lightly lower. The averaged flicker
metric improvement values of the Chen method, the
Liu method, the MCSTF method, and the proposed
method are -0.0758, +0.0253, -0.1621, -0.0225, and -
0.2142, respectively. In comparison of the Chen method,
the Liu method, the MCSTF method, and the CNN
method, the averaged PSNR improvement value of the
proposed method increases +0.5155, +0.3974, +0.3222,
and +0.6879, respectively. Similarly, the averaged SSIM
improvement value of the proposed method increases
+0.0102, +0.0129, +0.0122, and -0.0017. The averaged
flicker metric improvement value of the proposed
method decreases -0.1385, -0.2396, -0.0521, and -0.1918.
The H.265 standard is benefical from both intraframe
and interframe encoding structure to enhance flicker
metric and optimise PSNR value. So, in H.265 video
sequences, PSNRs of the proposed method improve less
than in MJPEG video sequences although PSNRs of the
proposed method still are the best among compared
methods. Flicker metric of the proposed method also
improves better than that of the other methods. The av-
eraged SSIM improvement value of the propose method
is equivalent to that of the CNN method and higher
than the other methods.

7 Conclusions

Lossy compression introduces annoying artifacts to vi-
sual human. This paper proposes a novel method to en-
hance the compressed video sequences. With the com-
pressed video sequence input, the authors implement
advanced methods to construct the dynamic texture
map, the flicker artifact map and the mosquito artifact
map. These maps are used to control the fuzzy filter’s
strength to remove artifacts while significantly preserv-

Table VI
Flicker Comparison of the Proposed Method for H.265 Video

Sequences

Sequences H.265 Chen Liu MCSTF CNN Proposed

Highway 3.2593 3.1835 3.2360 3.1025 3.6555 3.0008

Mother 0.2731 0.2370 0.2731 0.3217 0.2888 0.3310

Foreman 2.4169 1.5799 2.3516 1.3126 1.9443 1.1598

Mobile 1.3999 1.2856 1.3952 1.0346 1.2024 0.9828

Bridge-far 0.8340 0.8606 0.8546 0.7991 1.1422 0.7954

Bridge-
close

1.7015 2.0159 2.0716 1.9880 2.0140 1.7613

Hall 2.9285 3.1165 3.2249 3.0004 2.8316 2.8899

Beauty 0.8486 0.8126 0.8223 0.7271 0.7928 0.7418

Bosphorus 0.2127 0.1951 0.2025 0.1554 0.2005 0.1472

Honey 0.4196 0.3368 0.3380 0.3061 0.3133 0.3070

ReadyStea-
dyGo

1.4680 1.2576 1.3310 1.1425 1.1787 1.1530

YachtRide 0.3846 0.3564 0.3500 0.3115 0.3130 0.3061

Averaged difference -0.0758 0.0253 -0.1621 -0.0225 -0.2142

ing more details of the compressed video sequences.
The simulation results show that the proposed method
improves effectively in terms of PSNR, SSIM, flicker
metric and visual quality in comparision with other
state of the art methods.
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