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Abstract– X-ray computed tomography (CT) is now a widely used imaging modality for numerous medical purposes.
The risk of high X-ray radiation may induce genetic, cancerous and other diseases, demanding the development of new
image processing methods that are able to enhance the quality of low-dose CT images. However, lowering the radiation
dose increases the noise in acquired images and hence affects important diagnostic information. This paper contributes
an efficient denoising method for low-dose CT images. A noisy image is decomposed into three component images of
low, medium and high frequency bands; noise is mainly presented in the medium and high component images. Then, by
exploiting the fact that a small image patch of the noisy image can be approximated by a linear combination of several
elements in a given dictionary of noise-free image patches generated from noise-free images taken at nearly the same
position with the noisy image, noise in these medium and high component images are effectively eliminated. Specifically,
we give new solutions for image decomposition to easily control the filter parameters, for dictionary construction to improve
the effectiveness and reduce the running-time. Instead of using a large dataset of patches, only a structured small part of
patches extracted from the raw data is used to form a dictionary, to be used in sparse coding. In addition, we illustrate the
effectiveness of the proposed method in preserving image details which are subtle but clinically important. Experimental
results conducted on both synthetic and real noise data demonstrate that the proposed method is competitive with the
state-of-the-art methods.

Keywords– Computed Tomography (CT), medical image, low-dose radiation, patch-based image denoising, image decom-
position, sparse representation.

1 Introduction

Computed Tomography (CT), also called computerized
axial tomography, is one of the most important medical
imaging techniques, and uses X-rays to create cross-
sectional images of the body. CT images are used for
diagnostic and therapeutic purposes. However, a great
concern to patients and operators is the risk of high X-
ray radiation which may induce genetic, cancerous and
other diseases. Therefore, it is important to reduce the
radiation dose as much as possible while preserving the
image quality for clinical purposes. This calls for major
effort in the CT research community for developing
new image processing methods that are able to enhance
the quality of low-dose CT images. However, lower-
ing the radiation dose increases the noise in acquired
images, as illustrated in Figure 1, and hence affects
important diagnostic information. How to denoise low-
dose CT images such that the quality of denoised
images is as close as possible to that of normal-dose
CT images is the concern of this paper.

(a) Normal-dose (b) Low-dose

Figure 1. CT images of the liver at the same position with normal
and low radiation doses.

Numerous denoising methods have been proposed
in the literature. The classical noise filters such as the
Gaussian filter [1], the Wiener filter [2] and the bilateral
filter [3] could effectively reduce noise in homogeneous
regions but often suppress high frequency structures
such as edges or subtle details.

To overcome this drawback of the classical noise
filters, numerous other denoising approaches were pro-
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posed, such as the total variation (TV/TGV) based
methods [4–7], the non-local means (NLM) based
methods [8–10], the sparse representation based meth-
ods [11–14], and the 3D block-matching (BM3D) based
filters [15–17]. However, subtle details are still over-
smoothed. Thus, it is difficult to directly apply these
methods to medical images.

Example learning based image processing, as earlier
seen in for example [18], and has recently become an
attractive approach for CT image denoising as seen
in [19–21] using convolutional neural networks (CNN).
Given a training set of image pairs {(xi, yi)} where xi is
a noisy image of size m×m and yi is the corresponding
noise-free (clean) image of size n × n (1 ≤ n ≤ m),
the main idea of learning methods is to estimate the
map from the space of the noisy image to the space of
the noise-free image. In [19–21], the training dataset is
established from normal-dose and low-dose CT image
pairs. It is shown that CNN-based methods can effec-
tively reduce noise in low-dose CT images. Generally,
the performance of a learning-based denoising method
highly depends on the quality of the training dataset
and the method to establish the training data.

Another learning-based approach for CT image de-
noising is based on sparse representation [22–25]. In
this approach, a dictionary of noise-free image patches
is first created from a given set of standard example
CT images; by “standard”, we mean that these example
images are either noiseless or of high quality. Denoising
a noisy image is then performed patch-wise by esti-
mating the sparse representation of each patch of this
noisy image using the dictionary. Although denoising
of low-dose CT images by learning-based methods has
obtained significant achievements, preserving subtle
details which contain important pathological informa-
tion remains a challenge.

We mention here two other works in [26, 27], based
on which we develop further in this paper. In order to
preserve subtle details in the denoised image, the main
idea in [26] was to decompose an image into component
images corresponding to three frequency bands: low,
medium and high. The low and high frequency images
can be easily obtained by any traditional denoising
method. Denoising in [26] focuses on estimating the
high frequency image. To this end, an example dataset
of noise-free medium-high patch pairs is built from
a given set of standard images. Markov random field
(MRF) is then used to find in this example dataset the
best candidate of the high frequency component patch
in a noisy patch. By that way, it was demonstrated
that noise can be effectively removed while small de-
tails in the image were well preserved. However, since
the estimated high frequency component image was
directly synthesized from the dataset of patch-pairs,
the performance of the method highly depends on
the example images. Moreover, this method is time-
consuming.

A more effective denoising strategy was proposed
in [27] where sparse representation was used, instead
of the MRF, to estimate both the high and medium
frequency component patches of a noisy patch. To

denoise a patch x, a sub-dictionary including medium-
high frequency patch pairs, in which the medium fre-
quency patches are neighbors of the medium frequency
component of x in the example dataset. The sparse rep-
resentation of the medium frequency component of x
over the example medium frequency patches in the sub-
dictionary helps effectively estimate the high frequency
component of x. The efficiency of this method comes
from the fact that, for each patch, denoising is based on
an adaptive example sub-dictionary. However, similar
to the method in [26], a drawback of this method is
also time-consuming.

In both [26, 27], the decomposition of an image
(noisy or example) into component images of different
frequency bands is performed by two Gaussian low-
pass filters. The parameters of one filter, in terms of
size and variance, depend on the other and thus make
it difficult to set the filter parameters.

To improve on [26, 27], this paper proposes a new
patch-based denoising method with three contribu-
tions. First, we propose a new solution for image de-
composition that is easier to control the filter parame-
ters. Second, we propose a new solution for dictionary
construction to improve the effectiveness and reduce
the computational complexity of the method in terms
of running-time. Instead of using a large dataset of
patches, only a structured small part of patches ex-
tracted from the raw data is used to form a dictionary,
to be used in sparse coding. Third, we illustrate the
effectiveness of the proposed method in preserving
image details which are subtle but clinically important,
in a particular case of a cancerous noddle in a lung
image of a cancer patient. The proposed method is
competitive with the state-of-the-art methods.

The paper is organized as follows. After presenting
some background information in Section 2, we present
the proposed method in Section 3. The performance
evaluation of the proposed method is shown in Sec-
tion 4. Finally, conclusions are given in Section 5.

2 Background

Usually, in order to denoise effectively, denoising meth-
ods have to be designed based on the distribution of
noise. As shown in [21, 22], the noise distribution in
a CT image is not only non-uniform but also complex
over the whole image. For low-dose CT images, this
complexity of the noise model leads to poor perfor-
mance when using the traditional Gaussian and/or
Poisson prior-based methods. Trinh et al. in [22, 23]
proposed a useful assumption that the noise distri-
bution in CT images can be locally approximated by
a zero-mean Gaussian distribution. It is noteworthy
that, on the same image, noise levels may be different
for different positions. This assumption enables patch-
based denoising methods to use the Gaussian noise
assumption on small image patches.

Let Y be a noisy low-dose CT image. The objective
of this study is to estimate its ideal noise-free version
X. We use the assumption about the noise as that given
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in [22], that is, if yi centered at pixel i is a small patch
of Y, then

yi = xi + ni, (1)

where xi is the corresponding noise-free patch in X, ni is
additive white zero-mean Gaussian noise with variance
of σ2

i . Given yi, we want to estimate xi. In this paper, we
are interested in using sparse coding for patch-based
denoising.

The goal of sparse coding is to find a sparse repre-
sentation of a vector x ∈ Rd over a given set of sample
vectors {c1, c2, . . . , cN} ⊂ Rd. This set can be rewritten
in matrix form as D = [c1, c2, . . . , cN ]. Normally, it
is assumed that d < N, ci (i = 1, 2, . . . , N) are `2-
normalized vectors, and D is considered as a dictionary.
Then, if there exists a vector α ∈ RN containning a very
few non-zero entries such that x = Dα, then the sparse
vector α is often estimated by solving the following
optimization problem:

α̂ = arg min
α
‖x−Dα‖2

2 s.t. ‖α‖0 ≤ L, (2)

or
α̂ = arg min

α
‖α‖0 s.t. ‖x−Dα‖2

2 ≤ ε, (3)

where ‖α‖0 is the `0-pseudo-norm, which counts the
non-zero entries in α, L is the maximum number of
non-zero elements in α (L � N), and ε is a tolerance
parameter.

Numerous sparse-coding-based denoising methods
have been proposed; the idea comes from [12]. Elad
et al. in [12] introduced an effective denoising method,
referred to as KSVD. The authors used noisy patches yi
extracted from image Y as data for training a dictionary
D, to be then used in sparse-coding. D is determined
by solving the following optimization problem:

min
D,αi

∑
i
‖yi −Dαi‖2

2 + λ‖αi‖p s.t. ‖D(:, k)‖2 = 1,

where λ is a trade-off parameter controlling the spar-
sity penalty and the representation fidelity, ‖D(:, k)‖2
denotes the k-th column of D, and ‖ • ‖p is `p-norm
(0 ≤ p ≤ 1). After training the dictionary D, Dαi
is considered as the denoised version of yi. Although
KSVD can effectively remove noise, subtle details in the
image are often over-smoothed.

3 Proposed Method

Suppose that we need to restore an ideal CT image
X from its noisy low-dose image Y satisfying (1) with
the help of a given set Ω = {It}T

t=1 of T normal-dose
images, which are considered as noise-free images and
taken at nearly the same position as Y.

The method in [26] proposed a reasonable assump-
tion that if Y is decomposed into three component
images corresponding to three frequency bands (low,
medium and high), as

Y = Ylow + Ymid + Yhigh, (4)

then the majority of the noise is included in Yhigh

and the rest in Ymid. Hence, to denoise Y, we need

to estimate the noise-free component images Xmid and
Xhigh of Ymid and Yhigh, respectively. Finally,

X̂ = Ylow + Xmid + Xhigh (5)

is the denoising result (an estimate of X).
The method proposed in this paper follows the

above idea of image decomposition. The main blocks
of the proposed method are image decomposition,
database construction, sparse-coding-based denoising,
and image composition, as shown in Figure 2 and
presented next.

3.1 Image Decomposition

According to [26, 27], an image I, whether being
noise-free or noisy, is decomposed into three compo-
nent images Ilow, Imid and Ihigh, using two Gaussian
filters F low

1 and F low
2 . Specifically,

Ilow = F low
1 I,

Imid = FmidI = F low
2 I−F low

1 I,

Ihigh = I− Imid − Ilow.

As mentioned in Section 1, to properly obtain Imid of
I, the parameters of F low

2 , in terms of size and variance,
depend on those of F low

1 , and thus make it difficult to
set the filter parameters. For example, if we mistakenly
set the size and the variance of F low

2 to be the same as
F low

1 , then Imid is null.
To overcome this difficulty, we propose in this paper

a new solution of decomposition, as follows:

Ihigh = I−F low
1 I, (6)

Ilow = F low
2 F low

1 I, (7)

Imid = F low
1 I− Ilow = F low

1 I−F low
2 F low

1 I. (8)

We can see that this decomposition method also satis-
fies condition (4), I = Ihigh + Imid + Ilow. Equation (8)
shows that the frequency band of Imid is lower than
that of Ihigh and higher than that of Ilow. In addition,
the dependency of parameter setting of F low

2 on F low
2

is reduced; for example, we can set them to have the
same size and variance.

3.2 Dictionary Construction

Similar to [27], in this paper denoising is performed
patch-wise on Ymid and Yhigh. A database of medium-
high frequency image patch pairs is constructed from
a set Ω of standard images It, t = 1, . . . , T.

Each example image It is decomposed into three
component images Ilow

t , Imid
t and Ihigh

t , according to (6),
(7) and (8). For each image pair (Imid

t , Ihigh
t ), a set

of patch pairs is generated by randomly extracting
(
√

n×√n)-patches from Imid
t and Ihigh

t . These selected
patches are vectorized and scaled to obtain a sample
dataset Dt, as given by

Dt =

{
(cmid,t

i , chigh,t
i )=

(
pmid,t

i

‖pmid,t
i ‖

,
phigh,t

i

‖pmid,t
i ‖

)}
⊂Rn×Rn,

(9)
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Figure 2. Diagram of the proposed method.

Figure 3. Image decomposition using 2D low-pass filters.

where pmid,t
i and phigh,t

i correspond to the (
√

n×√n)-
patches at pixel i in images Imid

t and Ihigh
t , respectively.

Then, an overall database of normalized vector pairs
is synthesized from T datasets Dt, as given by

Σ =
T⋃

t=1

Dt = {(cmid
i , chigh

i )}NΩ
i=1.

Due to the spatial redundancy on image patches
in the standard images It ∈ Ω, there exit a large
number of similar elements in the overall database Σ. It
would therefore be time-consuming if sparse coding is
performed on Σ. To deal with this issue, we propose in
this paper a solution for data reduction, to create a dic-
tionary of size much smaller than that of the database.

Consider two normalized vectors cmid
i and cmid

j in Σ,
we have

‖cmid
i − cmid

j ‖2 = 2(1− cmid
i · cmid

j ).

Thus, cmid
i and cmid

j are called ε-similar if their scalar
product cmid

i · cmid
j ≥ ε with ε being close to 1. There-

fore, to reduce Σ, we only keep one vector among ε-
similar vectors. Finally, a dictionary D for sparse coding
is obtained

D = (Dmid, Dhigh) = {(cmid
i , chigh

i )}N
i=1, (10)

where Dmid = {cmid
i }N

i=1 and Dhigh = {chigh
i }N

i=1 such
that

cmid
i · cmid

j < ε, ∀i 6= j.

In our method, ε is empirically set to 0.99. The
computation time to obtain the dictionary D of 7092
atoms from set Σ with NΩ = 1522804 and n = 25, as
an example, is 40.485 seconds.

3.3 Sparse-coding-based Denoising

Suppose we need to denoise an image Y satisfying
assumption (1). We first decompose it into three com-
ponent images Ylow, Ymid, and Yhigh, according to (6),
(7) and (8). Then, for every patch yi in Y, we have

yi = ylow
i + ymid

i + yhigh
i ,

where ylow
i ∈ Ylow, ymid

i ∈ Ymid and yhigh
i ∈ Yhigh.

Following (5), the desired patch xi is estimated by

xi = ylow
i + xmid

i + xhigh
i ,

where xmid
i and xhigh

i are medium and high frequency
component patches of xi, which will be estimated from
ymid

i and yhigh
i , respectively. Following (9) and (10),

we have

cmid
i + chigh

i =
(pi − plow

i )

‖pmid
i ‖ ,

for all (cmid
i , chigh

i ) ∈ D, where pi is a vectorized
noise-free patch. Thus, corresponding to D, G ={

gi = (pi − plow
i )/‖pmid

i ‖
}N

i=1 can be considered as a
dictionary containing the middle and high frequency
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components of pi. Consequently, if

(xi − xlow
i ) =

N

∑
i=1

βigi

is a sparse representation of (xi − xlow
i ) on G, then

xmid
i + xhigh

i =
N

∑
i=1

βigi =
N

∑
i=1

(βicmid
i ) +

N

∑
i=1

(βic
high
i ).

Hence, we can consider

xmid
i =

N

∑
i=1

(βicmid
i ),

xhigh
i =

N

∑
i=1

(βic
high
i ).

It means that xmid
i and xhigh

i have the same sparse repre-
sentation on Dmid and Dhigh. This leads to a reasonable
assumption that with xi is a patch of size (

√
n×√n) as

the standard patches in database D vectorized patches
xmid

i and xhigh
i have the same sparse representation

on Dmid and Dhigh, respectively. Therefore, the corre-
sponding patches ymid

i of xmid
i and yhigh

i of xhigh
i also

have the same sparse representation on Dmid and Dhigh.

Since ymid
i is less noisy than yhigh

i , the sparse repre-
sentation will be determined by sparse-coding of ymid

i
over Dmid. In this paper, we use the sparse-coding
model given in (3), as given by

α̂i = arg min
αi
‖αi‖0,

s.t. ‖Dmidαi − ymid
i ‖2

2 ≤ γ(nσ2
i ), (11)

where γ is a threshold parameter. Here, γ is not too
sensitive with the noise level σi (standard deviation) in
yi because ymid

i is a noiseless patch.

Then, xmid
i and xhigh

i are estimated as

x̂mid
i = Dmidα̂i,

x̂high
i = Dhighα̂i.

Finally, we obtain the following estimate of the de-
noised patch:

x̂i = ylow
i + x̂mid

i + x̂high
i .

Comparing the sparse-coding model (2) used in [27]
and recalled below

α̂ = arg min
α

1
2
‖Dmid

i ff− ymid
i ‖2

2,

s.t. ‖ff‖0 ≤ L, ‖Dhigh
i α− yhigh

i ‖2
2 ≤ λσ2

i , (12)

where Dhigh
i and Dmid

i are K-atom sub-dictionaries ex-
tracted from Dmid and Dhigh, the sparse-coding model
used in this paper is more effective because it is dif-
ficult to set an optimal value for the threshold pa-
rameter L in (12) while setting values for parameter γ
in (11) is adaptive to the noise level of patches. More-
over, the model in (11) uses only one dictionary pair
(Dmid, Dhigh) for all patches and, therefore, reduces the
computational time and does not need the parameter K.

3.4 Image Composition

Having obtained all the estimates x̂i of all pixels i in
Y, we then combine them to obtain the final denoised
overall image, as shown below, by using the method
proposed in [12]:

X̂ = arg min
X

η‖X− Y‖2
2 + ∑

i
‖x̂i − RiX‖2

2, (13)

where Ri is a matrix of size n × M that extracts and
then vectorizes a patch of size

√
n×√n in an image X

of size W × H; here M = W · H.

4 Performance Evaluation

To evaluate the performance of proposed method, we
perform experiments on both synthetic and real low-
dose CT images. All used images are 8-bit grayscale
ones. The proposed method is compared to the state-
of-the-art denoising methods, namely non-local means
(NLM) [8], total generalized variation (TGV) [28], and
KSVD [12]. Moreover, it is also compared to several
previous learning-based methods proposed in [26] (re-
ferred to as MRFD) and in[27] (referred to as FD-SC1) to
clearly see the improvements. The proposed method is
referred to as FD-SC2 (this name stands for Frequency
Decomposition and Sparse Coding).

In FD-SC2, the Gaussian low-pass filters F low
1 and

F low
2 has the same size of 7 × 7, and the standard

deviation of 1 and 3, respectively. The overlap size
between two neighborhood

√
n×√n-patches is set to

(
√

n − 1). The threshold parameter γ in (11) and the
patch-size parameter will be experimentally adjusted
to obtain optimal values (see Section 4.4).

4.1 Objective Evaluation

For an objective evaluation, three normal dose CT
images of abdomen, lung, and head are used as noise-
free standard images, as shown in Figure 4(a,b,c). These
testing images were cropped from original images of
size 630 × 630 pixels of the same patient. Synthetic
low-dose CT images are obtained by simulation by
adding Gaussian noise with noise levels σ = 10, 20
and 30 to the standard images. The denoising methods
perform denoising on these synthetic noisy low-dose
images. Their results are then objectively compared to
the original standard images based on the two well-
known image quality assessment metrics, namely struc-
tural similarity (SSIM) [29] and peak signal-to-noise
ratio (PSNR).

For MRFD, FD-SC1 and FD-SC2, for each of the
testing CT images in Figure 4(a,b,c) we use three other
standard images to construct standard patch databases
(images in the three bottom rows in Figure 4). The patch
size used in MRFD and FD-SC1 depends on the noise
level, and thus in our experiments was set to 7 × 7,
11 × 11 and 15 × 15 for the noise levels σ = 10, 20
and 30, respectively. For FD-SC2, the patch size is fixed
to 11× 11 (the effect of the patch size is presented in
Section 4.4). Parameter η in (13) is set to 0.
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(a) abdomen (b) lung (c) head

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. From left to right are CT images of abdomen, lung and
head, respectively. The top rows contain testing images. These images
are used to generate synthetic noisy low-dose images for objective
evaluations. The remaining three rows contain the corresponding
standard images. These images are used to build dictionaries for the
learning-based denoising methods (MRFD, FD-SC1, FD-SC2). Source:
https://radiopaedia.org/cases.

The best results of the methods are reported in Ta-
bles I and II in which the best values obtained for each
noise level are in bold. As it can be seen, the quantita-
tive evaluations show that FD-SC2 was almost superior
to the other methods, indicating that our method is
promising for denoising low-dose CT images.

4.2 Subjective Evaluation

For a subjective evaluation, we show in Figure 5
the experimental results on the CT image of the lung
(Figure 4(b)) with noise level σ = 20. A region of
interest (ROI) (the yellow rectangle) including a small
point is zoomed in to facilitate visual comparison. This
point is a subtle detail in the overall image. Globally,
the methods denoised very effectively. However, it is
observed that in the ROI in Figures 5(c)-5(e) the small
point was smoothed out by TGV, NLM and KSVD.
Although this small point was better preserved by
MRFD, it is rather fuzzy (Figure 5(f)). Contrarily, as we
can see in Figures 5(g) and 5(h), the small point in the
ROI was effectively preserved by FD-SC1 and FD-SC2.

Table I
PSNR Comparison on CT Scans
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Table I
PSNR Comparison on CT Scans

Abdomen TGV NLM KSVD MRFD FD-SC1 FD-SC2

σ = 10 34.2799 36.3421 36.8336 35.6138 36.4885 37.1032

σ = 20 30.8922 32.1371 31.9603 31.1545 31.8460 32.3604

σ = 30 28.2133 28.9184 28.6996 28.1523 28.6462 29.1911

Head TGV NLM KSVD MRFD FD-SC1 FD-SC2

σ = 10 34.0854 34.5950 36.7655 35.4944 36.1263 36.9110

σ = 20 31.2148 31.6419 31.7591 31.3365 31.2083 32.0666

σ = 30 28.5300 28.9722 28.5374 28.3154 28.6859 29.1964

Lung TGV NLM KSVD MRFD FD-SC1 FD-SC2

σ = 10 35.7034 37.3210 39.7222 36.7019 38.5793 38.8037

σ = 20 33.1212 34.4838 35.3297 32.9889 34.3846 35.6359

σ = 30 31.0489 31.6936 31.8397 30.1855 31.2497 32.9167

Table II
SSIM Comparison on CT Scans

Abdomen TGV NLM KSVD MRFD FD-SC1 FD-SC2

σ = 10 0.7970 0.8083 0.7998 0.8089 0.8052 0.8213

σ = 20 0.7683 0.7141 0.7228 0.6929 0.7103 0.7436

σ = 30 0.65752 0.6426 0.6872 0.6078 0.6366 0.7018

Head TGV NLM KSVD MRFD FD-SC1 FD-SC2

σ = 10 0.8347 0.8340 0.8714 0.8790 0.8817 0.8865

σ = 20 0.7895 0.7717 0.8045 0.7931 0.7781 0.8173

σ = 30 0.7464 0.7096 0.7668 0.7079 0.7393 0.7804

Lung TGV NLM KSVD MRFD FD-SC1 FD-SC2

σ = 10 0.9496 0.9558 0.9695 0.9489 0.9619 0.9741

σ = 20 0.8877 0.8924 0.9439 0.8569 0.8923 0.9439

σ = 30 0.8669 0.8243 0.9134 0.7574 0.8038 0.9054

The best results of the methods are reported in
Tables I and II in which the best values obtained for
each noise level are in bold. As it can be seen, the
quantitative evaluations show that FD-SC2 was almost
superior to the other methods. This indicates that our
method is promising for denoising low-dose CT im-
ages.

4.2 Subjective evaluation

For subjective evaluation, we show in Figure 5 the
experimental results on the CT image of the lung
(Figure 4(b)) with noise level σ = 20. A region of
interest (ROI) (the yellow rectangle) including a small
point is zoomed in to facilitate visual comparison. This
point is a subtle detail in the overall image. Globally,
the methods denoised very effectively. However, it is
observed that in the ROI in Figures 5(c)-5(e) the small
point was smoothed out by TGV, NLM and KSVD.
Although this small point was better preserved by
MRFD, it is rather fuzzy (Figure 5(f)). Contrarily, as we
can see in Figures 5(g) and 5(h), the small point in the

ROI was effectively preserved by FD-SC1 and FD-SC2.

To further evaluate the effectiveness of the proposed
method, we conducted experiments on the ELCAP
public lung image database of the Cornell University1.
This database consists of real low-dose lung CT images
and also provides the locations of nodules detected
by radiologists. As it can be seen in Figure 6(a), the
low-dose image was strongly degraded by noise and
artifacts.

In Figure 6, we show the denoising results obtained
on one image in this database (Figure 6(a)). The low-
dose CT image includes a small nodule (the position of
nodules is zoomed and highlighted by rectangles). The
patch database was constructed by using a normal-dose
CT image (Figure 6(b)). Visually, noise in Figures 6(c)-
6(d) was effectively denoised by TGV and NLM. How-
ever, the nodule was also almost suppressed. Com-
pared to TGV and NLM, the nodule in Figure 6(f)
obtained by MRFD was better preserved but slightly

1http://www.via.cornell.edu/lungdb.html
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SSIM Comparison on CT Scans
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Table I
PSNR Comparison on CT Scans

Abdomen TGV NLM KSVD MRFD FD-SC1 FD-SC2

σ = 10 34.2799 36.3421 36.8336 35.6138 36.4885 37.1032

σ = 20 30.8922 32.1371 31.9603 31.1545 31.8460 32.3604

σ = 30 28.2133 28.9184 28.6996 28.1523 28.6462 29.1911

Head TGV NLM KSVD MRFD FD-SC1 FD-SC2

σ = 10 34.0854 34.5950 36.7655 35.4944 36.1263 36.9110

σ = 20 31.2148 31.6419 31.7591 31.3365 31.2083 32.0666

σ = 30 28.5300 28.9722 28.5374 28.3154 28.6859 29.1964

Lung TGV NLM KSVD MRFD FD-SC1 FD-SC2

σ = 10 35.7034 37.3210 39.7222 36.7019 38.5793 38.8037

σ = 20 33.1212 34.4838 35.3297 32.9889 34.3846 35.6359

σ = 30 31.0489 31.6936 31.8397 30.1855 31.2497 32.9167

Table II
SSIM Comparison on CT Scans

Abdomen TGV NLM KSVD MRFD FD-SC1 FD-SC2

σ = 10 0.7970 0.8083 0.7998 0.8089 0.8052 0.8213

σ = 20 0.7683 0.7141 0.7228 0.6929 0.7103 0.7436

σ = 30 0.65752 0.6426 0.6872 0.6078 0.6366 0.7018

Head TGV NLM KSVD MRFD FD-SC1 FD-SC2

σ = 10 0.8347 0.8340 0.8714 0.8790 0.8817 0.8865

σ = 20 0.7895 0.7717 0.8045 0.7931 0.7781 0.8173

σ = 30 0.7464 0.7096 0.7668 0.7079 0.7393 0.7804

Lung TGV NLM KSVD MRFD FD-SC1 FD-SC2

σ = 10 0.9496 0.9558 0.9695 0.9489 0.9619 0.9741

σ = 20 0.8877 0.8924 0.9439 0.8569 0.8923 0.9439

σ = 30 0.8669 0.8243 0.9134 0.7574 0.8038 0.9054

The best results of the methods are reported in
Tables I and II in which the best values obtained for
each noise level are in bold. As it can be seen, the
quantitative evaluations show that FD-SC2 was almost
superior to the other methods. This indicates that our
method is promising for denoising low-dose CT im-
ages.

4.2 Subjective evaluation

For subjective evaluation, we show in Figure 5 the
experimental results on the CT image of the lung
(Figure 4(b)) with noise level σ = 20. A region of
interest (ROI) (the yellow rectangle) including a small
point is zoomed in to facilitate visual comparison. This
point is a subtle detail in the overall image. Globally,
the methods denoised very effectively. However, it is
observed that in the ROI in Figures 5(c)-5(e) the small
point was smoothed out by TGV, NLM and KSVD.
Although this small point was better preserved by
MRFD, it is rather fuzzy (Figure 5(f)). Contrarily, as we
can see in Figures 5(g) and 5(h), the small point in the

ROI was effectively preserved by FD-SC1 and FD-SC2.
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This database consists of real low-dose lung CT images
and also provides the locations of nodules detected
by radiologists. As it can be seen in Figure 6(a), the
low-dose image was strongly degraded by noise and
artifacts.

In Figure 6, we show the denoising results obtained
on one image in this database (Figure 6(a)). The low-
dose CT image includes a small nodule (the position of
nodules is zoomed and highlighted by rectangles). The
patch database was constructed by using a normal-dose
CT image (Figure 6(b)). Visually, noise in Figures 6(c)-
6(d) was effectively denoised by TGV and NLM. How-
ever, the nodule was also almost suppressed. Com-
pared to TGV and NLM, the nodule in Figure 6(f)
obtained by MRFD was better preserved but slightly

1http://www.via.cornell.edu/lungdb.html

To further evaluate the effectiveness of the proposed
method, we conducted experiments on the ELCAP
public lung image database of the Cornell University1.
This database consists of real low-dose lung CT images
and provides the locations of nodules detected by radi-
ologists. As it can be seen in Figure 6(a), the low-dose
image was strongly degraded by noise and artifacts.

In Figure 6, we show the denoising results obtained
on one image in this database (Figure 6(a)). The low-
dose CT image includes a small nodule (the position of
nodules is zoomed and highlighted by rectangles). The
patch database was constructed by using a normal-dose
CT image (Figure 6(b)). Visually, noise in Figures 6(c)-
6(d) was effectively denoised by TGV and NLM. How-
ever, the nodule was also almost suppressed. Compared
to TGV and NLM, the nodule in Figure 6(f) obtained by
MRFD was better preserved but slightly smoothed. For
FD-SC1 and DF-SC2, we can easily see that they gave
good results, as shown in Figures 6(g) and 6(h)). The
small nodule was well preserved by FD-SC1 and FD-
SC2. However, noise in Figure 6(h) (FD-SC2) seems to
have been better removed, as compared to that in Fig-
ure 6(g) (FD-SC1). It is noticed that in this experiment
we used only one normal-dose CT image (Figure 6(b))
to build the patch database for the learning-based meth-
ods (MRFD, FD-SC1 and FD-SC2). This demonstrates
the potential of the proposed method.

1http://www.via.cornell.edu/lungdb.html.
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(a) Noisy image with σ = 20 (b) Original

(c) TGV [28] (d) NLM [8] (e) KSVD [12]

(f) MRFD [26] (g) FD-SC1 [27] (h) FD-SC2

Figure 5. Results on synthetic low-dose CT image of lung with noise level σ = 20. A region of interest is zoomed in to visually compare, among
different methods, the ability of preserving small details after denoising.

4.3 Computational Time

In order to compare computational complexity be-
tween the proposed method (FD-CS2) and its previ-
ous versions (MRFD and FD-SC1), we compute their
running-time on the same image of the head as shown
in Figure 4(c), with size of 608× 481 for three different
noise levels σ = 10, 20 and 30. The patch databases were
built from the same three standard images as shown in
Figures 4(f), 4(i) and 4(l). The patch size was set to 9× 9
for all noise levels σ = 10, 20, 30. The databases of the
FD-CS1 and FD-SC2 included 972 patch-pairs. All tests
were conducted using MATLAB 9.4 on a laptop with
an Intel(R) Core(TM) i5 3210M CPU @ 2.50Gz, 4.0 GB
Memory using Windows 64-bit.

In the denoising phase of FD-SC1 [27], for each noisy
input patch, a set of K nearest neighbors was searched
in the database before applying sparse coding using the
sparse representation (2). This subset is considered as a
sub-dictionary. In these experiments, the parameter K
was set to 50 and the parameter L in (2) was set to 5.

Experimental results are reported in Table III. As it
can be seen, FD-SC2 was significantly faster than MRFD
and FD-SC1. Compared to MRFD [26], FD-SC2 was 13
times faster with σ = 10, 16.3 times faster with σ =
20, and 23 times faster with σ = 30. Compared to FD-
SC1 [27], FD-SC2 was faster 4.8 times faster with σ =
10, 9.8 times faster with σ = 20, and 13.3 times faster
with σ = 30.
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(a) Low-dose CT image (b) Normal-dose CT image

(c) TGV [28] (d) NLM [8] (e) KSVD [12]

(f) MRFD [26] (g) FD-SC1 [27] (h) FD-SC2

Figure 6. Denoising result on a real low-dose lung CT image including one nodule at position (X=190, Y=394).

Table III
Running-time comparison of MRFD, FD-SC1 and FD-SC2 when
denoising the head image in Figure 4(c) (size 608× 481) with

noise levels σ = 10, 20 and 30 (running-time is given in seconds)
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Figure 6. Denoising result on a real low-dose lung CT image including one nodule at position (X=190, Y=394).

Table III
Running-time comparison of MRFD, FD-SC1 and FD-SC2 when
denoising the head image in Figure 4(c) (size 608× 481) with

noise levels σ = 10, 20 and 30 (running-time is given in
seconds).

Noise level MRFD [26] FD-SC1 [27] FD-SC2
σ = 10 129.00 46.90 9.63
σ = 20 78.13 46.77 4.78
σ = 30 86.41 46.90 3.73

4.4 Empirical Study on Parameters

In this subsection, we present the effect of the thresh-
old parameter ε in (25) and the patch size

√
n × √n

on the performance of the proposed method (FD-
CS2). Two well-known image quality metrics, SSIM
and PSNR, are used to analyze the influence of the
parameters. Experiments were conducted on the three

test images given in Figure 4 with three noise levels
σ = 10, 20, and 30.

To see the effect of γ, we performed experiments with
γ = 0.01, 0.02, . . . , 1.0, and the patch size is fixed at 11×
11. The results, as shown in Figure 7, indicate that the
optimal value of γ approximately was 0.09 for all three
noise levels. It means that the optimal value of γ is less
sensitive to noise.

Figure 8 shows the effect of the patch size. We
performed experiments with different patch sizes, from
5× 5 to 20× 20 while keeping γ in these experiments
constant at 0.09. Visually, the optimal patch size in the
the proposed method (FD-SC2) can be determined as
11× 11.
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γ = 0.01, 0.02, . . . , 1.0, and the patch size is fixed at 11×
11. The results, as shown in Figure 7, indicate that the
optimal value of γ approximately was 0.09 for all three
noise levels. It means that the optimal value of γ is less
sensitive to noise.

Figure 8 shows the effect of the patch size. We
performed experiments with different patch sizes, from
5× 5 to 20× 20 while keeping γ in these experiments
constant at 0.09. Visually, the optimal patch size in the
the proposed method (FD-SC2) can be determined as
11× 11.



86 REV Journal on Electronics and Communications, Vol. 9, No. 3–4, July–December, 2019

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

gamma

32

33

34

35

36

37

38

39

P
S

N
R

PSNR vs gamma in case sigma of noise is 10

Abdomen

Head

Lung

(a) σ = 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

gamma

26

27

28

29

30

31

32

33

34

35

36

P
S

N
R

PSNR vs gamma in case sigma of noise is 20

Abdomen

Head

Lung

(b) σ = 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

gamma

25

26

27

28

29

30

31

32

33

P
S

N
R

PSNR vs gamma in case sigma of noise is 30

Abdomen

Head

Lung

(c) σ = 30
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(f) σ = 30

Figure 7. The effects of parameter γ in (11) on the PSNR and SSIM measures. Experiments were performed on images in Figure 4 with noise
levels σ = 10, 20, 30.

(a) σ = 10 (b) σ = 20 (c) σ = 30

(d) σ = 10 (e) σ = 20 (f) σ = 30

Figure 8. The effects of the patch size on the PSNR and SSIM measures. Experiments were performed on images in Figure 4 with noise levels
σ = 10, 20, 30.
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5 Conclusions

This paper has presented an effective denoising method
for low-dose CT images. The proposed method, re-
ferred to as FD-SC2, was developed based on the
assumption that noise mainly lies in the medium
and high frequency components. Thus, a noisy image
is decomposed into three component images of low,
medium and high frequency bands, and then denoising
is processed on the medium and high frequency com-
ponent images. Moreover, inspired by recent success of
learning-based methods, we have also exploited useful
and available information from normal-dose CT images
in FD-SC2. Useful information from the database of
standard CT images is mined based on a sparse rep-
resentation model. The effectiveness of the proposed
method was verified through experimental results. FD-
SC2 can effectively reduce noise while preserving well
subtle image details as well as the nature of image. In
future works, we will study the problem of patch dictio-
nary optimization for sparse coding. Moreover, we will
also seek a better solution for the image decomposition.
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