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Abstract– In this paper, we study the throughput and outage probability (OP) of two-way relaying (TWR) communication
system with energy harvesting (EH). The system model consists two source nodes and a relay node which operates in
full-duplex (FD) mode. The effect of self-interference (SI) due to the FD operation on the system performance is evaluated
for both one-way full duplex (OWFD) and two-way full duplex (TWFD) diagrams where the amplify-and-forward (AF) relay
node collects energy harvesting with the time switching (TS) scheme. We first propose an individual OP expression for
each specific source. Then, we derive the exact closed-form overall OP expression for the OWFD diagram. For the TWFD
diagram, we propose an approximate closed-form expression for the overall OP. The overall OP comparison among hybrid
systems (Two-Way Half-Duplex (TWHD), OWFD, TWFD) are also discussed. Finally, the numerical/simulated results are
presented for Rayleigh fading channels to demonstrate the correction of the proposed analysis.

Keywords– Two-way relaying communications, Relaying, Full-duplex, Energy harvesting.

1 Introduction

The spectral efficiency is an important system specifi-
cation for designing next-generation wireless networks.
To address spectral efficiency problem, some works
proposed the cognitive radio technique in the two-
way1 relaying network [1–4]. However, almost current
wireless systems are operating in half-duplex (HD)
mode with different frequencies for down-link and up-
link channels. Recently, full-duplex (FD) transmission
had been proposed with the promise of significant
improvements in spectral efficiency due to shared same
frequency and time slot [5, 6]. However, SI caused by
simultaneous transceiver operation of the FD mode
affects the system performance [7]. To evaluate the
effect of SI on the OWFD and TWFD systems, the
authors [8] proposed the analysis on the average end-
to-end rate and the OP. Compared to the OWFD, the
TWFD achieves higher spectrum efficiency but suffers
more SI [9]. Moreover, EH from radio frequency signals
is an emerging technology helping prolong the life-
time of wireless devices. EH was proposed for internet
of things (IoT) applications [10] and 5G full-duplex
communications [11–13]. As such, FD communication
system with EH can obtain both high spectral efficiency
and high energy efficiency.

1All the works in [1–4] did not mention the full-duplex relaying.

1.1 Related Works

This section conducts the survey of the (OWFD,
TWFD) communications systems with EH. The OWFD
communications in cooperative relaying networks with
EH was considered in the recent works. The authors
in [14] studied the influence of SI on the OWFD
transmission where the optimal protocol was proposed
to choose either the TWHD or the OWFD with the
AF relay to minimize the OP. The selected AF relay
to maximize the information rate subject to the total
power limitation was proposed in [15] where the op-
timal transmit power can be obtained by Lagrangian
multiplier method. Considering the AF and decode-
and-forward (DF) operations, the authors [16] analyzed
the OP combined with the selection of relay nodes to
compare with direct links under the imperfect channel
state information (CSI). Analyzing the individual OPs
with the relay node using AF and DF techniques for
comparison between FD and HD was performed in [17]
but only simulations were demonstrated for the α− µ
fading model. Optimizing the OP and quality of ser-
vices (QoS) for non-linear EH models was implemented
in [18] where the proposed FD DF relaying model was
deduced by the optimal solution based on the golden
section method. The authors in [19] solves the power ef-
ficiency optimization problem for EH FD relaying with
the joint power and time allocation scheme to obtain
different source transmit powers. While [20] proposed
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the optimum transmission algorithm with significantly
reduced complexity, [21] optimized channel capacity.
In [22], the beam-former design to maximize the signal-
to-noise ratio (SNR) for a DF relay was implemented
but only simulations were shown to prove that the
multi-antenna relay performs better than the single-
antenna relay. An optimization algorithm proposed for
the multiple-input multiple-output (MIMO) orthogonal
frequency division multiplexing (OFDM) networks to
achieve spectral efficiency for OWFD networks was
conducted in [23]. Finally, the analysis on the OP and
the throughput in the FD cognitive radio networks was
carried out in [24].

In TWFD systems, the SI caused by the FD operation
was available at all nodes. The authors in [25] analyzed
the exact individual OP for each node for the AF relay.
The design of energy signal and decoder for TWFD
networks was studied in [26] and the sum-throughput
comparison between the TWFD and the TWHD was
also presented there. The authors in [27] proposed two
schemes called relay selection (RS) and all-participant
(AP) to optimize the power splitting factor in order to
minimize the OP and maximize the sum capacity. The
simulation results in [27] illustrated the sum capacity of
the RS higher than that of the AP. Bit error rate (BER)
analysis with spatial diversity was studied in [28] and it
is noticeable that when the quality of the SI cancellation
is improved, the BER performance of FD is better than
HD. Then, the analysis of the individual OP with the
DF relay was carried out in [29] and [30] where the
imperfect CSI was also considered. The authors in [31]
proposed the optimal power allocation scheme and the
optimal relay node placement strategy to minimize the
OP for the AF relay but did not perform the closed-
form analysis. The beam-forming design to optimize
the time division ratio for EH FD networks was studied
in [32]. To assess the effect of SI on TWFD systems, the
authors in [33] proposed a two-node model to exchange
information through multiple relay nodes, using AF
technique, TS and power splitting (PS) methods. The
analysis of individual OP and specific throughput for
each node was also studied there. To implement the
overall OP, the authors further proposed the analysis at
approximately high SNRs for Rayleigh fading channels.

1.2 Motivation and Contribution
The above survey exposes that the effect of SI on

the performance of the TWFD communication system
with energy harvesting has not been fully evaluated
yet, especially for the overall OP. Also, the spectral
efficiency needs to be compared and evaluated among
different diagrams (TWFD, OWFD, TWHD).

The contributions of this paper can be summarized
as follows:

1) Propose the overall exact closed-form OP expres-
sion for the OWFD communication system.

2) Suggest the overall approximate closed-form OP
expression for the TWFD communication system.

3) Compare and evaluate the effect of SI on the sys-
tem performance in terms of OP and throughput
for three diagrams: TWFD, OWFD, and TWHD.

 

Tx/Rx Relay 

(a) One-Way Full-Duplex relaying

 

Tx/Rx Relay 

(b) Two-Way Full-Duplex relaying

Figure 1. OWFD and TWFD system models.

The rest of the paper is organized as follows. In
Section 2, we describe the system model. Section 3
presents a detailed performance analysis. The results
are presented in Section 4 whilst the conclusions are
given in Section 5.

2 System Model

Figure 1(a) shows the OWFD system model. The relay
R has the limited power; therefore, R collects radio
frequency (RF) energy from S1 or S2 in the first time slot
of αT. For the TWFD communications in Figure 1(b), R
collects energy from both S1 and S2. It is noted that for
the OWFD communications, only R operates in the FD
mode while for the TWFD communications, all three
nodes operate the FD mode.

We define the residual SI channels at S1 as h11, at
S2 as h22, and at R as hrr. The corresponding SI can
be modeled as a Gaussian random variable with zero
mean and variance of σ2

11=σ2
22=σ2

rr =σ2
SI as in [6, 9, 33].

The involved channels, S1 → R and S2 → R, are
denoted as hS1R and hS2R, respectively. The coefficients
for R → S1 and R → S2 channels are also signified as
hRS1 and hRS2 , correspondingly. We assume that chan-
nel coefficients are independent and the incoming and
outgoing channels are reciprocal, i.e., hS1R = hRS1 = h1,
hS2R = hRS2 = h2, with the block Rayleigh fading
distribution. Therefore, X = |h1|2 and Y = |h2|2 are the
random variables (RVs), with exponential distributions,
i.e., they have the probability distribution functions
(PDFs), fX(x) = λ1e−λ1x, fY(y) = λ2e−λ2y and the
cumulative distribution functions (CDFs), FX(x) = 1−
e−λ1x, FY(y) = 1 − e−λ2y. Here, the expectation of X
or Y is denoted as µi = 1

λi
= d−χ

i with χ being the
path-loss exponent and di being the transmitter-receiver
distance, i = 1, 2.
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Energy Harvesting at R

from  S1 or  S2

Information Transmission

S1→R→S2

Information Transmission

S2→R→S1

T  1 / 2T  1 / 2T

T

(a) One-Way FD Relaying

Energy Harvesting at R 

from S1 & S2

Information Transmission

S1, S2 → R and R → S1, S2

T  1 T

(b) Two-way FD Relaying

Figure 2. Time Switching Protocol at AF Full-Duplex Relaying.

2.1 SNR in the OWFD Communications

From Figure 2(a), the energy collected in the first
time-slot of αT is

ER = β
(

P1|h1|2 + σ2
R

)
αT. (1)

Similarly, if R only collects the energy from S2, its
collected energy is ER = β

(
P2|h2|2 + σ2

R

)
αT. Here, P1

and P2 are transmit powers of S1 and S2, respectively;
0 < β < 1 is the energy conversion coefficient; 0 < α <
1 is the time switching ratio; T is the block time.

From (1), the transmit power at the R is

PR =
ER

(1− α) T

=
αβ

(1− α)

(
P1|h1|2 + σ2

R

)
= φ

(
P1|h1|2 + σ2

R

)
,

(2)

where φ = αβ
1−α .

S1 and S2 exchange information via the AF relay.
In the second time-slot of (1−α)T

2 , the information is
transmitted from S1 → R → S2. The signal received
at R in the time-slot t is described as

yR[t] =
√

P1h1x1[t] + hrrxR[t] + nR[t], (3)

where E
{
|x1(t)|2

}
= 1 with E {} being the expectation

operator; x1(t) and xR(t) are the transmit signals from
S1 and R, respectively; nR(t) denotes the additive white
Gaussian noise (AWGN) at R with zero mean and
variance σ2

R.
For the AF based OWFD communications, the trans-

mit signal of the relay can be expressed as in [34]
and [35]

xR[t] =
√

PRθ1yR [t− 1] , (4)

where θ1 is the power constraint factor at R:

θ1 =
1√

P1|h1|2 + PR|hrr|2 + σ2
R

. (5)

The received signal at S2 is

y2[t] = h2xR[t] + n2(t) (6)

with E
{
|xR(t)|2

}
= PR.

Replacing (4) and (5) into (6), we have

y2[t] = θ1
√

PRh2×(√
P1h1x1[t− 1] + hrrxR[t− 1] + nR[t− 1]

)
+ n2[t]

= θ1
√

PR
√

P1h1h2x1[t− 1]︸ ︷︷ ︸
signal

+ θ1
√

PRh2hrrxR[t− 1]︸ ︷︷ ︸
SI

+ θ1
√

PRh2nR[t− 1] + n2[t]︸ ︷︷ ︸
noise

,

(7)

where ni(t), i ∈ (1, R, 2), is the AWGN at S1, R, S2 with
zero mean and variance σ2

i . Without loss of generality,
we let σ2

1 = σ2
2 = σ2

R = σ2.

From (7), the SNR at S1 is

γOWFD
2 =

E
{
|signal|2

}
E
{
|noise|2

}
=

θ1
2PRP1|h1|2|h2|2

θ1
2(PR)

2|h2|2σ2
rr + θ1

2PR|h2|2σ2 + σ2
.

(8)

Replacing PR in (2) and θ1 in (5) into (8), we have

γOWFD
2

=
P1|h1|2|h2|2

|h2|2
(
σ2 + φσ2

SIσ
2
)
+ φP1|h1|2|h2|2σ2

SI + σ2( 1
φ + σ2

SI)

=
a1xy

by + c1xy + c
,

(9)

where a1 = P1, b = σ2 + φσ2
SIσ

2, c1 = φP1σ2
SI , c =

σ2
(

1
φ + σ2

SI

)
, E{|hrr|2} = σ2

rr = σ2
SI .

Please see Appendix A for detailed derivation of (9).

Using the same approach as (9), the SNR at S2 is

γOWFD
1

=
P2|h1|2|h2|2

|h1|2
(
σ2 + φσ2

SIσ
2
)
+ φP2|h1|2|h2|2σ2

SI + σ2( 1
φ + σ2

SI)

=
a2xy

bx + c2xy + c
,

(10)

where a2 = P2, b = σ2 + φσ2
SIσ

2, c2 = φP2σ2
SI , c =

σ2
(

1
φ + σ2

SI

)
.

Please see Appendix A for detailed derivation of (10).
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2.2 SNR in the TWFD Communications

From Figure 2(b), the energy collected in the first
time-slot of αT is

ER = β
(

P1|h1|2 + P2|h2|2 + σ2
R

)
αT. (11)

From (11), the transmit power at R is inferred as

PR =
ER

(1− α) T

=
αβ

(1− α)

(
P1|h1|2 + P2|h2|2 + σ2

R

)
= φ

(
P1|h1|2 + P2|h2|2 + σ2

R

)
.

(12)

Unlike the OWFD communications, in the TWFD dia-
gram, S1 and S2 exchange information in the same time-
slot of (1− α)T; therefore, multi-access (MA) phase and
broadcast phase (BC) can perform simultaneously in
one time-slot.

The received signal at R in time-slot t is described as

yR[t] =
√

P1h1x1[t] +
√

P2h2x2[t] + hrrxR[t] + nR[t],
(13)

where x1(t), xR(t), and x2(t) are the transmit signals of
S1, R, and S2, respectively; nR(t) denotes the AWGN at
R with zero mean and variance σ2

R.
For the AF based TWFD communications, in t-th time

slot, the signal transmitted by the relay is the amplified
version of the prior received signal as in [6, 9, 33, 36, 37]:

xR[t] =
√

PRθyR [t− 1] . (14)

The amplification factor at the AF relay is

θ =
1√

P1|h1|2 + P2|h2|2 + PR|hrr|2 + σ2
R

. (15)

The received signal at S1 is given by

y1[t] = h1xR[t] +
√

P1h11x1[t] + n1[t], (16)

where h11 is residual SI at S1, and n1[t] is the AWGN
at S1.

Replacing (14) into (16), we have

y1[t]

= θ
√

PR

(√
P1|h1|2x1[t− 1] +

√
P2 |h1| |h2| x2[t− 1]

)
+ θ
√

PRh1hrrxR[t− 1] +
√

P1h11x1[t]

+ θ
√

PRh1nR[t− 1] + n1[t].
(17)

Suppose that the CSI is perfect. Then, in (17) the
component containing x2[t− 1] is the useful signal at S1
while the component x1[t− 1] is known by S1; therefore,
it can be removed. As such, (17) can be written as

y1[t] = θ
√

PRP2 |h1| |h2| x2[t− 1]︸ ︷︷ ︸
signal

+ θ
√

PRh1hrrxR[t− 1] +
√

P1h11x1[t]︸ ︷︷ ︸
SI

+ θ
√

PRh1nR[t− 1] + n1[t]︸ ︷︷ ︸
noise

,

(18)

where h11 is the SI caused by the FD operation at S1.
From (18), one can infer the SNR at S1 as

γTWFD
1 =

θ2PRP2|h1|2|h2|2

θ2PR
2|h1|2|hrr|2+ θ2PR|h1|2σ2

R + P1|h11|2+ σ2
1

.

(19)
Replacing PR in (12) and θ in (15) into (19) and after

some manipulations, we have

γTWFD
1 =

P2|h1|2|h2|2

|h1|2
{

σ2
SIφ(P1|h1|2 + P2|h2|2 + σ2) + σ2

}
+ k1

.

(20)
From (20), we have

γTWFD
1 =

e1xy
x [ f1(P1x + P2y + g1) + g1] + k1

(21)

where e1 = P2, f1 = σ2
SIφ, g1 = σ2, and k1 =(

P1σ2
SI + σ2) ( 1

φ + σ2
SI

)
.

Please see Appendix B for detailed derivation of (21).
Following the same derivation as (21), we have

γTWFD
2 =

e2xy
y [ f2(P1x + P2y + g2) + g2] + k2

, (22)

where e2 = P1, f2 = σ2
SIφ, g2 = σ2, and k2 =(

P2σ2
SI + σ2) ( 1

φ + σ2
SI

)
.

Please see Appendix B for detailed derivation of (22).

3 Performance Analysis

3.1 The OP of the OWFD Communications

The individual OP of Si is defined as

POWFD
out,i = Pr

(
γOWFD

i < τ
)

(23)

where i ∈ (1, 2), and τ is the SNR threshold at the
node Si.

Throughput can be calculated through POWFD
out,i at the

fixed data rate RT (bps/Hz). For the OWFD communi-
cations, the throughput is given by

T0 = RT

(
1− POWFD

out,i

) (1− α)

2
, (24)

where τ = 2RT − 1.
The OP is defined as the probability which the SNR

is less than the SNR threshold:

POWFD
out,1 = Pr

(
γOWFD

1 < τ
)

= Pr
(

a2xy
bx + c2xy + c

< τ

)

=

{
Pr
(

y < τ{bx+c}
x(a2−τc2)

)
, a2 − τc2 > 0

1 , a2 − τc2 < 0

(25)

As shown in Appendix C, POWFD
out,1 in (25) can be repre-

sented in the closed form for the case of a2− τc2 > 0 as

POWFD
out,1 = 1− λ1e

− λ2τb
(a2−τc2)

√
ψ

λ1
K1

(√
ψλ1

)
, (26)

where ψ = 4τcλ2
(a2−τc2)

.
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Following the same approach as (26), we have

POWFD
out,2 = Pr

(
γOWFD

2 < τ
)

= 1− λ2e
− λ1τb
(a1−τc1)

√
ϑ

λ2
K1

(√
ϑλ2

)
,

(27)

where ϑ = 4τcλ1
(a1−τc1)

.

Please see Appendix C for detailed derivation of (27).

The end-to-end overall OP of the AF based OWFD
communications is defined as

POWFD
e2e = Pr

({
γOWFD

1 < τ
}
∪
{

γOWFD
2 < τ

})
= Pr

(
γOWFD

1 < τ
)

︸ ︷︷ ︸
POWFD

out,1

+Pr
(

γOWFD
2 < τ

)
︸ ︷︷ ︸

POWFD
out,2

− Pr
({

γOWFD
1 < τ

}
∩
{

γOWFD
2 < τ

})
︸ ︷︷ ︸

POWFD
out,12

,

(28)

where

POWFD
out,12 = Pr

({
γOWFD

1 < τ
}
∩
{

γOWFD
2 < τ

})
= Pr

({
a2xy

bx + c2xy + c
< τ

}
∩
{

a1xy
by + c1xy + c

< τ

})
= Pr

({
y <

τ (bx + c)
(a2 − τc2)x

}
∩
{

x <
τ (by + c)
(a1 − τc1)y

})
= Pr

({
y <

τ (bx + c)
ax

}
∩
{

x <
τ (by + c)

dy

})
= P1 + P2

(29)

and

P1 = −λ1e−
λ2bτ

a

(√
β1

λ1
K1

(√
β1λ1

)

−
∞

∑
t=0

(−1)tφ1
t

t!
(x0)

1−tEt (λ1x0)

)

− λ1

λ2y0/x0 + λ1

(
e−(λ2y0+λ1x0) − 1

)
(30)

and

P2 = −λ2e−
λ1bτ

d

(√
β2

λ2
K1

(√
β2λ2

)

−
∞

∑
t=0

(−1)tφ2
t

t!
(y0)

1−tEt (λ2y0)

)

− λ2

λ1x0/y0 + λ2

(
e−(λ1x0+λ2y0) − 1

)
(31)

Replacing (30) and (31) into (29), we obtain POWFD
out,12 .

Finally, we achieve the closed-form expression of the

end-to-end overall OP as

POWFD
e2e = 1− λ1e

− λ2τb2
(a2−τc2)

√
ψ

λ1
K1

(√
ψλ1

)
+ 1− λ2e

− λ1τb1
(a1−τc1)

√
ϑ

λ2
K1

(√
ϑλ2

)
+ λ1e−

λ2bτ
a

(√
β1

λ1
K1

(√
β1λ1

)
−

∞

∑
t=0

(−1)tφ1
t

t!
(x0)

1−tEt (λ1x0)

)

+
λ1

λ2y0/x0 + λ1

(
e−(λ2y0+λ1x0) − 1

)
+ λ2e−

λ1bτ
d

(√
β2

λ2
K1

(√
β2λ2

)
−

∞

∑
t=0

(−1)tφ2
t

t!
(y0)

1−tEt (λ2y0)

)

+
λ2

λ1x0/y0 + λ2

(
e−(λ1x0+λ2y0) − 1

)
,

(32)

where a = a2 − τc2, d = a1 − τc1, x0 =
ϕ+
√

ϕ2+4τab2c
2ab ,

y0 = τ(bx0+c)
ax0

, ϕ = −ac + τb2 + cd.
Please see Appendix D for detailed derivation of (32).

3.2 The OP of the TWFD Communications

The individual OP is defined as

PTWFD
out,i = Pr

(
γTWFD

i < τ
)

. (33)

The throughput of the TWFD communications is
given by

T0 = RT

(
1− PTWFD

out,i

)
(1− α). (34)

PTWFD
out,1 is computed as

PTWFD
out,1 = Pr

(
γTWFD

1 < τ
)

= Pr
(

e1xy
x [ f1(P1x + P2y + g1) + g1] + k1

< τ

)
.

(35)

Perform further simplifications, we have

PTWFD
out,1 ={

Pr
(

y < τx( f1P1x+ f1g1+g1)+τk1
x(e1−τ f1P2)

)
, e1 − τ f1P2 > 0

1 , e1 − τ f1P2 < 0
(36)

As shown in Appendix C, PTWFD
out,1 in (36) can be repre-

sented in the closed form for the case of e1−τ f1P2>0 as

PTWFD
out,1 = 1− λ1e−

λ2τ( f1g1+g1)
e1−τ f1P2

√
Ω1

Ψ1
K1

(√
Ω1Ψ1

)
, (37)

where Ω1 = 4λ2τk1
(e1−τ f1P2)

and Ψ1 = λ2τ f1P1
e1−τ f1P2

+ λ1.
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Following the same approach as (37), we have

PTWFD
out,2 = Pr

(
γTWFD

2 < τ
)

= 1− λ2e−
λ1τ( f2g2+g2)

e2−τ f2P1

√
Ω2

Ψ2
K1

(√
Ω2Ψ2

)
,

(38)

where Ω2 = 4λ1τk2
(e2−τ f2P1)

and Ψ2 = λ1τ f2P2
e2−τ f2P1

+ λ2.

Please see Appendix C for detailed derivation of (38).

The end-to-end overall OP of the AF based TWFD
communications is defined as [9, Eq. (9)]

PTWFD
e2e = Pr

(
min

(
γTWFD

1 , γTWFD
2

)
< τ

)
= 1− Pr

(
γTWFD

1 > τ, γTWFD
2 > τ

)
.

(39)

From (39), we have

PTWFD
e2e = Pr

(
γTWFD

1 < τ
)

︸ ︷︷ ︸
PTWFD

out,1

+Pr
(

γTWFD
2 < τ

)
︸ ︷︷ ︸

PTWFD
out,2

− Pr
({

γTWFD
1 < τ

}
∩
{

γTWFD
2 < τ

})
︸ ︷︷ ︸

PTWFD
out,12

,
(40)

where PTWFD
out,1 and PTWFD

out,2 are given in (37) and (38),
respectively.

We approximate the component PTWFD
out,12 in (40) as

PTWFD
out,12 = Pr({γTWFD

1 < τ} ∩ {γTWFD
2 < τ})

' Pr ({γ11 < τ} ∩ {γ22 < τ}) ,
(41)

where γ11 and γ22 are given by

γTWFD
1 =

e1xy
x [ f1(P1x + P2y + g1) + g1] + k1

=
e1xy

f1P1x2 + f1P2xy + f1g1x + g1x + k1

≤ e1xy
f1P1x + f1P2xy + f1g1x + g1x + k1

=
e1xy

( f1P1 + f1g1 + g1)x + f1P2xy + k1

= γ11,

(42)

and

γTWFD
2 =

e2xy
y [ f2(P1x + P2y + g2) + g2] + k2

=
e2xy

f2P1xy + f2P2y2 + f2g2y + yg2 + k2

≤ e2xy
f2P1xy + f2P2y + f2g2y + yg2 + k2

=
e2xy

( f2P2 + f2g2 + g2)y + f2P1xy + k2

= γ22.

(43)

It is noted that approximations in (42) and (43) are
valid because x and y are channel gains, i.e., 0 < x,
y < 1.

Without loss of generality, for performance compari-
son between the TWFD and OWFD schemes, we choose
P = P1 = P2. Therefore, the approximated SNRs in (42)

and (43) are similar to those of the OWFD, i.e.,

γ11 =
e1xy

( f1P1 + f1g1 + g1)x + f1P2xy + k1

=
e1xy

Bx + C1xy + C

(44)

and

γ22 =
e2xy

f2P1xy + ( f2P2 + f2g2 + g2)y + k2

=
e2xy

By + C2xy + C
,

(45)

where B ∆
= f1P1 + f1g1 + g1

∆
= f2P2 + f2g2 + g2, C ∆

=

k1
∆
= k2, C1 = f1P2, C2 = f2P2.
Remaining parameters as defined in (21) and (22), we

have from (41):

PTWFD
out,12 ' −λ1e−

λ2bτ
a

(√
β1

λ1
K1

(√
β1λ1

)
−

∞

∑
t=0

(−1)tφ1
t

t!
(x0)

1−tEt (λ1x0)

)
− λ1

λ2y0/x0 + λ1

(
e−(λ2y0+λ1x0) − 1

)
− λ2e−

λ1bτ
d

(√
β2

λ2
K1

(√
β2λ2

)
−

∞

∑
t=0

(−1)tφ2
t

t!
(y0)

1−tEt (λ2y0)

)
− λ2

λ1x0/y0 + λ2

(
e−(λ1x0+λ2y0) − 1

)
,

(46)

where a = e1 − τC1, and d = e2 − τC2, x0 =
ϕ+
√

ϕ2+4τab2c
2ab , y0 = τ(bx0+c)

ax0
, ϕ = −ac + τb2 + cd.

Please see Appendix D for detailed derivation of (46).
Replacing (37), (38) and (46) into (40), we obtain the

approximate closed-form OP formula for the TWFD
communications.

4 Simulation Results

In this section, the simulation results are presented to
evaluate the performance of the OWFD and the TWFD
communications as well as to compare them with the
TWHD communications. The effect of the SI on the
OP is evaluated via key parameters such as SNR, the
time switching ratio α, the energy conversion efficiency
β, the target transmission rate RT , the transmit power
of each source. Toward this end, we choose the co-
ordinates of S1 at (0.0, 0.0), and S2 at (1.0, 0.0), and
R at (0.5, 0.0). For demonstration purpose, the same
transmit powers are considered, i.e., P1 = P2 = P. The
SI at all the nodes are assumed to be the same, i.e.,
σ2

11 = σ2
22 = σ2

rr = σ2
SI = SI. The path-loss exponent

is fixed at χ = 3. In the following figures, “The."
and “Sim." represent the analytical and the simulated
results, respectively.

Figure 3 shows the throughput of TWFD, OWFD and
TWHD with β = 0.5, RT = 1 bps/Hz, σ2

SI = 1 for
two cases of α = 0.2 and α = 0.5. The throughput of
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Figure 4. OP of the OWFD via SNR.

the OWFD is obtained from (24) while the through-
put of the TWFD is obtained from (34). However, the
throughput of the TWHD is achieved from (24) with
σ2

SI = 0. The results show that the theoretical analysis
matches well with the Monte-Carlo simulation. Also,
the throughput is increased with higher SNR because
the OP decreases in (24) and (34). Moreover, when α is
small, the throughput of the TWHD and the OWFD are
greater than that of the TWFD. This can be explained
from the fact that the SI affects the TWFD more than
the OWFD and the TWHD. Furthermore, when α in-
creases, the remaining time for information processing
decreases; therefore, the TWFD only needs one time-
slot for information processing while the TWHD and
the OWFD need two time-slots for signal processing.
This improves the throughput of the TWFD.

Figure 4 evaluates to the effect of the SI on the OP of
the OWFD. The simulation parameters are α = β = 0.5,
two cases of RT = 0.5 bps/Hz and RT = 1 bps/Hz,
σ2

SI = 0.5, and σ2
SI = 1. It is seen that the simulated

results match well with the theoretical ones, verifying
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Figure 6. OP of the TWFD via SNR.

the exactness of the proposed closed-form overall OP
in (28). Moreover, when the SNR increases, the per-
formance is improved because the outage gets lower.
Furthermore, the OP increases due to the effect of the
SI because higher SI, the lower SNR is. For the same SI
level, the OP increases with higher fixed transmission
rate. This is because the higher fixed transmission rate
requires the higher throughput; therefore, the same
SNR causes more outage for the system.

The parameters in Figure 5 are P1 = P2 = 4 dB, RT =
1 bps/Hz, two cases of α = 0.3 and α = 0.5, σ2

SI = 0.5
and σ2

SI = 1. It is observed that the SI affects the OP
of the OWFD; the higher the SI is, the larger OP is.
Additionally, the OP decreases when α is smaller. This
can be explained from the fact that the OWFD can have
more time for signal processing, improving the system
performance. Furthermore, there is an optimum value
of α and β for the minimum OP.

In Figure 6, we simulate with the parameters: α =
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Figure 7. OP of the TWFD via α

β = 0.5, two cases of σ2
SI = 0.5 and σ2

SI = 1, RT = 0.5
bpz/Hz and RT = 0.8 bps/Hz. In this figure, “Sim.cx"
represented by dash lines is the exact simulation of
PTWFD

out,12 in (40) while “Sim.xx" and “The.xx" are the
simulation and the theory of the approximate PTWFD

out,12
in (41). It is clear that the SI affects significantly the
OP performance. Moreover, the higher SI is, the larger
OP is. For higher SNRs, the exact OP bound coincides
the approximate OP. Furthermore, at the lower fixed
transmission rate, the “Sim.xx" line is close to “Sim.cx"
line as illustrated in (42) and (43).

Figure 7 shows the effect of α on the OP of the TWFD
communications for P1 = P2 = 2 dB, RT = 0.1 bps/Hz,
two cases of β = 0.5 and β = 0.7, and σ2

SI = 0.5 and
σ2

SI = 1. The simulation results matched well analysis
results. This figure shows that for the same β, the OP
increases when the SI increases because the TWFD uses
all the nodes which work in full-duplex mode; hence,
they suffer more SI, resulting in the lower end-to-end
SNR. Further, when the β is small, the energy efficiency
gets lower; so, the relay node has no enough energy to
forward the information, causing system outage. When
the α is higher, the OP is higher. This can be explained
as follows. Although the relay node can harvest more
energy, the remaining time for signal processing also
decreases; so, the OP increases.

The parameters in Figure 8 are α = β = 0.5, RT = 0.5
bps/Hz, two cases of σ2

SI = 0.5 and σ2
SI = 1. This

figure shows that the OP of the TWFD is greater than
those of the OWFD and the TWHD. This is explained
from the fact that the TWFD suffers more SI than the
OWFD. For the TWHD, the SI is zero. As such, to
improve the performance of the TWFD and the OWFD,
the SI needs to be removed or minimized. It is seen
that the analysis exactly agrees the simulation, verifying
the precision of the proposed analysis. Additionally, the
outage probability is inversely proportional to the SNR.

The parameters in Figure 9 are α = 0.5, RT = 0.5
bps/Hz, P1 = P2 = 4 dB, two cases of σ2

SI = 0.5
and σ2

SI = 1. It is observed that the OP of the TWFD
and the OWFD increases quickly with higher SI level.
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Figure 9. OP via β.

Furthermore, the OP of the TWHD is the least because
it is not affected by the SI. Moreover, because the TWFD
uses all nodes with FD while the OWFD has only one
FD at the relay. It is inevitable that the TWFD suffers
more severe residual self-interference than the OWFD
and the TWHD.

The parameters in Figure 10 are β = 0.5, RT = 0.1
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Figure 10. OP via α.
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Figure 11. OP via fixed transmission rate.

bps/Hz, P1 = P2 = 2 dB, two cases of σ2
SI = 0.5 and

σ2
SI = 1. The results show that the lower the SI is, the

lower the OP is. Moreover, for the same SI level, the
OP of the TWFD is greater than that of the OWFD.
This can be explained from the fact that the TWFD
uses all nodes suffering more SI while the TWHD is
not affected by the SI; therefore, the OP of the TWHD
is the least. Furthermore, with the lower SI level, the
OP of the OWFD is close to that of the TWHD.

The parameters in Figure 11 are β = 0.5, α = 0.3,
P1 = P2 = 2 dB, two cases of σ2

SI = 0.5 and σ2
SI = 1.

It is observed that the OP increases at higher trans-

mission rate because the higher required transmission
rate needs the higher SNR for the same OP. This figure
also shows the exact agreement between the analysis
and the simulation. Moreover, the outage probability
is proportional to the transmission rate. This can be
explained by the fact that higher demand on target
transmission rates induces the system unable to satisfy,
causing higher outage probability.

5 Conclusions

This paper presented an efficient method to calculate
the overall OP of the AF relaying systems with the
TWFD and the OWFD. Their OP was also compared
with that of the TWHD. The simulated results validated
the proposed method. Moreover, the TWFD and the
OWFD communications are considerably deteriorated
by the self-interference due to the FD operation at
the EH relay. Therefore, the SI cancellation techniques
should be further exploited to improve the system
performance for the TWFD and the OWFD communi-
cations, which is our future work.
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Appendix A

This section will prove the expressions of the SNRs
in (9) and (10). From (8), we have

γOWFD
2 =

E
{
|signal|2

}
E
{
|noise|2

}
=

θ1
2PRP1|h1|2|h2|2E

{
|x1[t− 1]|2

}
θ1

2PR|h2|2|hrr|2E {|xR[t− 1]|2}+ θ1
2PR|h2|2σ2

R + σ2
2

=
θ1

2PRP1|h1|2|h2|2

θ1
2(PR)

2|h2|2σ2
SI + θ1

2PR|h2|2σ2 + σ2
.

(47)

Replacing PR in (2) and θ1 in (5) into (47), we have

γOWFD
2 =

P1|h1|2|h2|2

PR|h2|2σ2
SI + |h2|2σ2 + σ2

PRθ1
2

=
P1|h1|2|h2|2

|h2|2σ2 + PR|h2|2σ2
SI +

σ2(P1|h1|2+PR |hrr |2+σ2)
PR

=
P1|h1|2|h2|2

|h2|2σ2 + PR|h2|2σ2
SI +

σ2
(

PR
φ +PR |hrr |2

)
PR

=
P1|h1|2|h2|2

|h2|2σ2 + PR|h2|2σ2
SI + σ2

(
1
φ + |hrr|2

) .

(48)
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From (48), we have

γOWFD
2 =

P1|h1|2|h2|2

|h2|2σ2+ φP1|h1|2|h2|2σ2
SI+ φ|h2|2σ2

SIσ
2+ σ2( 1

φ + |hrr|2)
.

(49)

After some manipulations, we have

γOWFD
2

=
P1|h1|2|h2|2

|h2|2
(
σ2 + φσ2

SIσ
2
)
+ φP1|h1|2|h2|2σ2

SI + σ2( 1
φ + σ2

SI)

=
a1xy

by + c1xy + c
,

(50)

where E{|hrr|2} = σ2
rr = σ2

SI .
This completes the proof of (9).
The same approach for S2 → R→ S1, we have

θ2 =
1√

P2|h2|2 + PR|hrr|2 + σ2
. (51)

The received signal at S1 is

y1[t] = h1xR[t] + n1[t], (52)

where
xR[t] =

√
PRθ2yR [t− 1] . (53)

Replacing (51) and (52) into (53), we obtain

y1[t] = θ2
√

PRh1×(√
P2h2x2[t− 1] + hrrxR[t− 1] + nR[t− 1]

)
+ n1[t]

= θ2
√

PR
√

P2h1h2x2[t− 1]︸ ︷︷ ︸
signal

+ θ2
√

PRh1hrrxR[t− 1]︸ ︷︷ ︸
SI

+ θ2
√

PRh1nR[t− 1] + n1[t]︸ ︷︷ ︸
noise

(54)

From (54), one infers the SNR at S1 as

γOWFD
1 =

P2|h1|2|h2|2

|h1|2
(
σ2 + φσ2

SIσ
2
)
+ φP2|h1|2|h2|2σ2

SI + σ2
(

1
φ + σ2

SI

)
=

a2xy
bx + c2xy + c

,

(55)

which completes the proof of (10).

Appendix B

This section will prove the expressions of the SNRs
in (21) and (22). From (19), we have (56).

We further simplify (56) as

γTWFD
1 =

P2|h1|2|h2|2

|h1|2|hrr|2φ
(

P1|h1|2 + P2|h2|2 + σ2
R

)
+ |h1|2σ2

R + k1

.

(57)

After some simplifications, we have

γTWFD
1 =

P2|h1|2|h2|2

|h1|2
{

σ2
SIφ

(
P1|h1|2 + P2|h2|2 + σ2

)
+ σ2

}
+ k1

. (58)

Further simplification of (58) leads to

γTWFD
1 =

e1xy
x [ f1(P1x + P2y + g1) + g1] + k1

. (59)

This finishes the proof of (21). The same procedure
is applied to prove (22).

Appendix C

This section will prove the formulas in (26) and (27).
First of all, we start with

POWFD
out,1 = Pr

(
γOWFD

1 < τ
)

= Pr
(

a2xy
bx + c2xy + c

< τ

)
= Pr (a2xy < τ {bx + c2xy + c})

= Pr (a2xy− τc2xy < τ {bx + c})

=

{
Pr
(

y < τ{bx+c}
x(a2−τc2)

)
, a2 − τc2 > 0

1 , a2 − τc2 < 0

(60)

We further simplify (60) for the case of a2− τc2 > 0 as

POWFD
out,1 =

∞∫
0

FY

(
τ {bx + c}

x (a2 − τc2)

)
fX (x) dx

= 1−
∞∫

0

e
− τ{bx+c}

x(a2−τc2)
λ2

λ1e−λ1xdx

= 1− λ1e
− λ2τb
(a2−τc2)

∞∫
0

e
− 4τcλ2
(a2−τc2)4x

−λ1x
dx

= 1− λ1e
− λ2τb
(a2−τc2)

∞∫
0

e−
ψ
4x−λ1xdx

= 1− λ1e
− λ2τb
(a2−τc2)

√
ψ

λ1
K1

(√
ψλ1

)
.

(61)

This finished the proof of (26). The same procedure
is applied to prove (27).

In the following, we will prove the formulas in (37)
and (38). We start with

PTWFD
out,1 = Pr

(
γTWFD

1 < τ
)

= Pr
(

e1xy
x [ f1(P1x + P2y + g1) + g1] + k1

< τ

)
= Pr (e1xy < τx[ f1(P1x + P2y + g1) + g1] + τk1)

= Pr (e1xy < τ f1P2xy + τ f1x {P1x + g1}+ τxg1 + τk1)

= Pr (xy {e1 − τ f1P2}) < τx ( f1P1x + f1g1 + g1) + τk1
(62)
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γTWFD
1 =

P2|h1|2|h2|2

PR|h1|2|hrr|2 + |h1|2σ2
R +

P1|h11|2 + σ2
1

θ2PR
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1
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P1|h1|2 + P2|h2|2 + PR|hrr|2 + σ2

R

)
PR
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PR|h1|2|hrr|2 + |h1|2σ2
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(
P1|h11|2 + σ2

1
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PR
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PR
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P2|h1|2|h2|2

PR|h1|2|hrr|2 + |h1|2σ2
R +

(
P1|h11|2 + σ2

1

) (
1
φ + |hrr|2

)

(56)

and

PTWFD
out,1 =

=

{
Pr
(

y < τx( f1P1x+ f1g1+g1)+τk1
x(e1−τ f1P2)

)
, e1 − τ f1P2 > 0

1 , e1 − τ f1P2 < 0
(63)

Now, we compute PTWFD
out,1 in (63) for the case of

e1 − τ f1P2 > 0 as

PTWFD
out,1 =

=

∞∫
0

FY

(
τx ( f1P1x + f1g1 + g1) + τk1

x (e1 − τ f1P2)

)
fX (x) dx

= 1−
∞∫

0

e
−λ2

τ( f1P1x+ f1g1+g1)
e1−τ f1P2

−λ2
τk1

x(e1−τ f1P2) λ1e−λ1xdx

= 1− λ1e−
λ2τ( f1g1+g1)

e1−τ f1P2

∞∫
0

e
− λ2τk1
(e1−τ f1P2)x

− λ2τ f1P1
e1−τ f1P2

x−λ1x
dx

= 1− λ1e−
λ2τ( f1g1+g1)

e1−τ f1P2

∞∫
0

e
− 4λ2τk1
(e1−τ f1P2)4x

−
(

λ2τ f1P1
e1−τ f1P2

+λ1

)
x
dx

= 1− λ1e−
λ2τ( f1g1+g1)

e1−τ f1P2

∞∫
0

e−
Ω1
4x −Ψ1xdx

= 1− λ1e−
λ2τ( f1g1+g1)

e1−τ f1P2

√
Ω1

Ψ1
K1

(√
Ω1Ψ1

)
.

(64)

This finished the proof of (37). The same procedure
is applied to prove (38).

Appendix D

For the AF based TWHD communications, the SNRs
were given by [38] and [39] as γ1 = aXY

bX+c and γ2 =

dXY
bY+c . Then, the OP of the TWHD communications is

PTWHD
out = Pr ({γ1 < τ} ∪ {γ2 < τ})

= Pr (γ1 < τ)︸ ︷︷ ︸
A1

+Pr (γ2 < τ)︸ ︷︷ ︸
A2

− Pr({γ1 < τ} ∩ {γ2 < τ})︸ ︷︷ ︸
A3

(65)

where

A1 = Pr (γ1 < τ)

= Pr
(

aXY
bX + c

< τ

)
= Pr (aXY < τ {bX + c})

= Pr
(

Y <
τ {bX + c}

aX

)
=

∞∫
0

FY

(
τ {bX + c}

aX

)
fX (x) dx

=

∞∫
0

(
1− e−λ2

τ{bX+c}
aX

)
λ1e−λ1xdy

= 1−
∞∫

0

e−λ2
τ{bX+c}

aX λ1e−λ1xdx

= 1− λ1e−
λ2bτ

a

∞∫
0

e−
λ2cτ

ax −λ1xdx

= 1− λ1e−
λ2bτ

a

∞∫
0

e−
4λ2cτ

a4x −λ1xdx

= 1− λ1e−
λ2bτ

a

√
4λ2cτ

aλ1
K1

(√
4λ1λ2cτ

a

)

(66)

and
A2 = Pr(γ2 < τ)

= 1− λ2e−
λ1bτ

d

√
4λ1cτ

dλ2
K1

(√
4λ1λ2cτ

d

)
.

(67)

The derivation of A3 below can use to the proof of
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the OP formula in (29) for POWFD
out,12 in the OWFD scheme

and (41) for PTWFD
out,12 in the TWFD scheme as

A3 = Pr ({γ1 < τ} ∩ {γ2 < τ})

= Pr
({

axy
bx + c

< τ

}
∩
{

dxy
by + c

< τ

})
= Pr

({
y <

τ (bx + c)
ax

}
∩
{

x <
τ (by + c)

dy

})

=

x0∫
0

τ(bx+c)
ax∫

y0
x0

x

fx,y (x, y)dydx +

y0∫
0

τ(by+c)
dy∫

x0
y0

y

fx,y (x, y)dxdy

= P1 + P2,
(68)

where x0 =
ϕ+
√

ϕ2+4τab2c
2ab , y0 = τ(bx0+c)

ax0
, and ϕ =

−ac + τb2 + cd.

The formula in (68) can be rewritten as

P1 =

x0∫
0

τ(bx+c)
ax∫

y0
x0

x

fx,y (x, y)dydx

=

x0∫
0

τ(bx+c)
ax∫

y0
x0

x

λ1e−λ1xλ2e−λ2ydydx

= λ1λ2

x0∫
0


τ(bx+c)

ax∫
y0
x0

x

e−λ2ydy

e−λ1xdx

= −λ1

x0∫
0

(
e−

λ2τ(bx+c)
ax − e−

λ2y0
x0

x
)

e−λ1xdx

= −λ1

x0∫
0

e−
λ2τ(bx+c)

ax e−λ1xdx + λ1

x0∫
0

e−
λ2y0

x0
xe−λ1xdx

= −λ1e−
λ2bτ

a

x0∫
0

e−
λ2τc

ax e−λ1xdx + λ1

x0∫
0

e−
λ2y0

x0
xe−λ1xdx

= −λ1e−
λ2bτ

a

x0∫
0

e−
λ2τc

ax e−λ1xdx

︸ ︷︷ ︸
T1

+ λ1

x0∫
0

e−
λ2y0

x0
xe−λ1xdx

︸ ︷︷ ︸
T2

(69)

The T2 term is given by

T2 = λ1

x0∫
0

e−
λ2y0

x0
xe−λ1xdx

= λ1

x0∫
0

e−
(

λ2y0
x0

+λ1

)
xdx

= − λ1
λ2y0

x0
+ λ1

(
e−
(

λ2y0
x0

+λ1

)
x0 − 1

)
(70)

and

T1 = −λ1e−
λ2bτ

a

x0∫
0

e−
λ2τc

ax e−λ1xdx

= −λ1e−
λ2bτ

a

 ∞∫
0

e−
λ2τc

ax e−λ1xdx−
∞∫

x0

e−
λ2τc

ax e−λ1xdx



= −λ1e−
λ2bτ

a


∞∫

0

e−
λ2τc

ax −λ1xdx

︸ ︷︷ ︸
T11

−
∞∫

x0

e−
λ2τc

ax e−λ1xdx

︸ ︷︷ ︸
T12

 .

(71)

Applying [40, Eq. (3.324.1)], we obtain

T11 =

∞∫
0

e−
λ2τc

ax −λ1xdx

=

∞∫
0

e−
4λ2τc

a4x −λ1xdx

=

∞∫
0

e−
β1
4x −λ1xdx

=

√
β1

λ1
K1

(√
β1λ1

)
,

(72)

where β1 = 4λ2τc
a .

We rewrite T12 in (71) as

T12 =

∞∫
x0

e−
λ2τc

ax e−λ1xdx

=

∞∫
x0

e−
φ1
x e−λ1xdx.

(73)

Let φ1 = λ2τc
a . Then, applying the Taylor series

expansion for e−
φ1
x =

∞
∑

t=0

(−1)tφ1
t

t!xt , one obtain

T12 =

∞∫
x0

∞

∑
t=0

(−1)tφ1
t

t!xt e−λ1xdx

=
∞

∑
t=0

(−1)tφ1
t

t!

∞∫
x0

e−λ1x

xt dx.

(74)

Using the exponent integral

Ek (z) =
∞∫

1

e−zt

tk dt (75)

to write (74) in the closed form as

T12 =
∞

∑
t=0

(−1)tφ1
t

t!
(x0)

1−kEk (λ1x0) . (76)
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From (69), we have

P1 = T1 + T2

= −λ1e−
λ2bτ

a (T11 + T12)

− λ1

λ2y0/x0 + λ1

(
e−(λ2y0+λ1x0) − 1

)
= −λ1e−

λ2bτ
a

(√
β1

λ1
K1

(√
β1λ1

)

−
∞

∑
t=0

(−1)tφ1
t

t!
(x0)

1−tEt (λ1x0)

)

− λ1

λ2y0/x0 + λ1

(
e−(λ2y0+λ1x0) − 1

)
.

(77)

Following the same derivation as P1, we have
skipped some manipulation of P2 in (78)

P2 =

y0∫
0

τ(by+c)
dy∫

x0
y0

y

fx,y (x, y)dxdy

=

y0∫
0

τ(by+c)
dy∫

x0
y0

y

λ1e−λ1xλ2e−λ2ydxdy

= −λ2e−
λ1bτ

d

y0∫
0

e−
λ1τc

dy e−λ2ydy

︸ ︷︷ ︸
H1

+ λ2

y0∫
0

e−
λ1x0

y0
ye−λ2ydy

︸ ︷︷ ︸
H2

(78)

where

H2 = λ2

y0∫
0

e−
λ1x0

y0
ye−λ2ydy

= − λ2

λ1x0/y0 + λ2

(
e−(λ1x0+λ2y0) − 1

) (79)

and

H1 = −λ2e−
λ1bτ

d

y0∫
0

e−
λ1τc

dy e−λ2ydy

= −λ2e−
λ1bτ

d


∞∫

0

e−
λ1τc

dy −λ2ydy

︸ ︷︷ ︸
H11

+

∞∫
xy

e−
λ1τc

dy e−λ2ydy

︸ ︷︷ ︸
H12


(80)

with

H11 =

∞∫
0

e−
λ1τc

dy −λ2ydy

=

√
β2

λ2
K1

(√
β2λ2

)
,

(81)

where β2 = 4λ1τc
d and

H12 =

∞∫
y0

e−
λ1τc

dy e−λ2ydy

=

∞∫
y0

e−
φ2
y e−λ2ydy.

(82)

Let φ2 = λ1τc
d . Then, we have e−

φ2
y =

∞
∑

t=0

(−1)tφ2
t

t!yt and

H12 =

∞∫
y0

∞

∑
t=0

(−1)tφ2
t

t!yt e−λ2ydy

=
∞

∑
t=0

(−1)tφ2
t

t!

∞∫
y0

e−λ2y

yt dy

=
∞

∑
t=0

(−1)tφ2
t

t!
(y0)

1−tEt (λ2y0)

(83)

Inserting (79) and (80) into (78), we have

P2 = H1 + H2

= −λ2e−
λ1bτ

d

(√
β2

λ2
K1

(√
β2λ2

)
−

∞

∑
t=0

(−1)tφ2
t

t!
(y0)

1−tEt (λ2y0)

)

− λ2

λ1x0/y0 + λ2

(
e−(λ1x0+λ2y0) − 1

)
.

(84)

Therefore, combining (77) with (84) results in

A3 = Pr ({γ1 < τ} ∩ {γ2 < τ})

= −λ1e−
λ2bτ

a

(√
β1

λ1
K1

(√
β1λ1

)
−

∞

∑
t=0

(−1)tφ1
t

t!
(x0)

1−tEt (λ1x0)

)

− λ1

λ2y0/x0 + λ1

(
e−(λ2y0/x0+λ1) − 1

)
− λ2e−

λ1bτ
d

(√
β2

λ2
K1

(√
β2λ2

)
−

∞

∑
t=0

(−1)tφ2
t

t!
(y0)

1−tEt (λ2y0)

)

− λ2

λ1x0/y0 + λ2

(
e−(λ1x0/y0+λ2) − 1

)
.

(85)

This finishes the proof of POWFD
out,12 in (29) and PTWFD

out,12
in (41).
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