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Abstract– Lithium-ion batteries (LIBs) have recently been used widely in moving devices. Understand status of the batteries
can help to predict the failure and improve the effectiveness of using them. There are some lithium-ion information that
define the battery health over time. These are state-of-charge (SOC), state-of-health (SOH), and remaining-useful-life (RUL).
Normally, a LIB is working under charging and discharging cycles continuously. In this paper, we will focus on the data
dependency of different time-slots in a cycle and in a sequence of cycles to retrieve RUL. We leverage multi-channel inputs
such as temperature, voltage, current and the nature of peaks cross the cycles to improve our prediction. Comparing to
existing methods, the experiments show that we can improve from 0.040 to 0.033 (reduce 17.5%) in RMSE loss, which is
significant.
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1 Introduction

Lithium-Ion Battery (LIB) is a type of rechargeable bat-
tery commonly manufactured in the market. Basically,
there are two typical periods including charging and
discharging. During the charging process, the positive
ions (Li+) move from cathode to anode and vice versa
in the discharging process to create the current. The
looping process of charging and discharging usually
follows a typical routines called CC-CV (constant cur-
rent, then constant voltage). LIBs are mostly used for
moving objects, especially in lightweight wearable de-
vices [1]. However, in some cases, LIBs appear in big
moving objects such as cars, drones, unmanned aerial
vehicles, etc. The power system using LIBs gained much
attention in industry with a giant number of LIBs-
enabled devices [2]. Those outdoor moving objects,
mobile devices, solar power devices... are required to
use LIBs due to their features like lightweight, durabil-
ity, high capacity, and self-discharge ability. Moreover,
to maintain a good performance of LIBs in outdoor
environments, some other features such as safety, dura-
bility, issue-free stability and, high quantity of working
cycles,... are highly demanding [2]. Nowadays, thanks
to the continuous development of battery technolo-
gies, people keep requiring on improvement of over-
charging, self-discharging, capacity fading, impedance,
shocks, and aging [3].

A battery full-charge capacity usually degrades over
different cycles of using it. The degrading levels follow
time-series trend and seasonality that are specific to
LIBs nature. Internal information in a cycle of charg-
ing and discharging such as Voltage (V), Current (A),
Temperature (◦C), Charge Capacity (Ah), Discharge
Capacity (Ah) or Resistance (Ω) should relate to the
output capacity of a battery (SOH) by a combination of
relationships. There are a major numbers of studies try
to find this correlation and utilize it for later prediction.
The regression outputs mainly are SOC, SOH as these
are the key battery values.

Figure 1 shows the typical SOH degradation of the
four batteries over different cycles. And Figure 2 de-
scribes the changes of Voltage, Current during charging
and discharging process. Obviously, capacity data of
LIBs are time-series over full cycles of charging and
discharging. Moreover, the trend and seasonality of
SOH, SOC are specific to LIBs dependencies. Therefore,
recent studies try to extract the relationship from this
time-series correlation for future regression. Base on the
physical constrains, it is considered that battery health
data SOC, SOH and RUL are obvious output because
they are required to notify a warning message or al-
ternate a working procedure of some battery-using de-
vices. As the result, prediction on these output creates
crucial impact to detect a relevant status or a problem,
making sure the power system is working properly.
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Figure 1. NASA normal battery usage dataset.

Figure 2. Charge and discharge process of Li-ion battery in one
cycle [4].

Recently, according to the software analysis of Battery
Management System (BMS) [2], there are two different
approaches including traditional model-based methods
(class-1) using the classical model and regression and
AI-DL models (class-2) [5, 6]. In class-1, the equivalent
circuit models were popular during the years 2000-
2012, including some studies using finite elements of
LIBs [6]. The methods used finite elements required
deep domain knowledge (including physical, mate-
rial, chemistry of the cells) to optimize the models.
Therefore, these approaches need experience from LIBs
hardware experts. Lately, people are focusing on the
class-2, using AI-DL models to improve measurement
and prediction of LIBs data, as well as to reduce the
domain knowledge and maintain the high accuracy
output. In this paper, we focus on methods of class-2
to predict SOH. The baseline is a state-of-the-art paper
using an encode-decode multi-channel LSTM base [7],
and we engage our improvement by analyzing data de-
pendencies (data-driven) with some adaptation into the
model structure. Moreover, observing that seasonality
of SOH data plays an essential part in degradation,
we engage peak data as another factors to go along
with SOH output (multitask). The experiments shows
that our analysis significantly improved the prediction
output.

The structure of this paper is as follows: Section 2
describes existing feasible regression methods and the
characteristics presented in the literature. Section 3
discusses our methods for online implementation and

presents its pros and cons. The comparison of the
legacy and our approach with quantitative data and
accuracy is shown in Section 4 - Experimental Result.
And finally, Section 5 concludes the paper.

2 Literature Review

2.1 LIBs Studies
It is noticeable that today technologies have deeply

relied on battery development, especially for moving
devices. Recently, since LIBs are highly dominated due
to high power density, durability, and environmental
friendliness [8], LIBs are advancing into the field of
transportation, especially electric vehicles (EVs) [9].
The power supply systems are asked for range-per-
charge and weight-ratio over the whole main moving
machines. Therefore, to achieve the above energy den-
sity goals, many studies are developing high-capacity
cathode and anode materials of LIBs [10, 11]. For
LIBs materials, researches show that Ni-rich materials
have been considered as powerful candidates by high
capacity and anode with silicon-based or tin-based
carbon composites will provide long-life capacity as
well as cycling stability. However, the drawbacks of
these materials include thermal stability reduction [12].

Beside capacity density, battery safeness is another
crucial matter to be considered. Reports show a wide
range of casualties due to malfunctional issues from
EV portable batteries. Unsafe behavior of LIBs may be
caused by internal exothermic. Basically, the exothermic
reactions consist of: (1) excessive delithiation of cath-
odes cause irreversible structure change of cathodes,
oxygen release and oxidization of organic solvents;
(2) lithium dendrites formed on anodes react with
electrolytes to generate a great sum of gas, heat and
lithium dendrites, then penetrate the separator and
result in an internal short circuit of batteries; (3) the
melting of PE-based separators (when the temperature
is greater than 130◦C), also leads to internal short
circuit; and (4) the electrolyte is easily decomposed
at high temperature (>200◦C) and high voltage (about
4.6 V) will also generate high warmth [9].

Recently, thanks to the development of electrochem-
ical technologies, there are many studies that enhance
the design novel, safety, and material of cathodes and
anodes. In addition, stabler electrolytes and separators
improve batteries with high energy density. In practical
applications, LIBs are assembled into battery modules,
and the safety awareness of the battery system is
different from that of a standalone cell. Beside the
safety, it is also crucial to improve real-time internal
status monitoring capabilities to follow the state of
charge (SOC), state of health (SOH), remaining-useful-
life (RUL), electrolyte leakage, and dendrite growth
of the cells to keep the quality of LIBs under better
working conditions.

2.2 SOH Predictions
Predicting SOH is a challenge job due to trending and

seasonality of battery full charge over different cycles.
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Since the output data play crucial part in the working
behaviours of the battery, there are a great deal of
researches on this topic. Conventionally, some model-
based methods go with hardware, measurement tools,
online data collection, and the computation models are
Kalman Filter (EKF), Taylor Series Sigma-Point Kalman
Filter (SPKF), and Particle Filter [6] or Relevance Vector
Machine (RVM) [13]. On the other hand, AI-DL meth-
ods such as Neural Network (NN), Convolution Neural
Network (CNN), Relational Neural Network (RNN), or
Long Short-Term Memory (LSTM) are proving their
dramatic improvement recently. [7] provide a LSTM-
based multi-channel method of encode-decode model
to predict SOH over time-series representation, using
NASA dataset [14] and Center for Advanced Life Cy-
cle Engineering (CALCE) [15]. We will use [7] as the
baseline for our experiment. Another study [16] ap-
proaches similarly by adding some features extraction
inside a cycle to improve the output. However, the
use of discharge cycle for SOH predict is an unfair
approach for prediction once we are at the full internal
information of discharging and accumulating for the
predicting data.

Therefore, although there are many studies, the main
concerns are the accuracy of measurement devices, and
the cost to be spent in controlling different options.
Another concerning topic would be how much LIB
physical and chemical related information is required
and how much noise-tolerance can the system handle
based on big input data existing.

In this paper, we approach base on [7] using NASA
dataset. Some of big-data sources are NASA [14], Ox-
ford [18], Center for Advanced Life Cycle Engineering
(CALCE) [15] or Sandia National Labs [19] and 124-
cells of [20]. Since conventional model-based methods
provide relevent results, yet require the full capability
to analyze the dependency of the large volume of data,
physical and chemical knowledge of LIBs. To avoid
the dependency of battery domains expertise, we will
mostly focus on AI-DL methods and the [7] is used as
the baseline for our experiment. AI-DL is a classical
topic in computer science. Previously, in the years
2010s, neural network and similar algorithms were not
considered much due to high computation time and
low performance. However, recently, there are a great
deal of improvement in parallel processing on hardware
and libraries, deep learning methods have been devel-
oped majorly and contribute to the significant wave
over the last 10 years. Deep learning for time-series
forecast, which battery RUL prediction is included, is a
clear example of this deep-learning-is-everywhere era.

Recently, there are a number of studies described
machine-learning based methods for battery health
estimation using NASA [21] or CALCE [15] data-set.
These studies archive rel event performance comparing
with conventional approaches. A research [22] provided
estimation on EV battery story with recurrent nonlin-
ear auto-regressive with exogenous inputs (RNARX)
algorithm and similar methods using some validation
of hybrid pulse power characterization (HPPC) and
claimed that they archive the smallest MAE (Mean

Absolute Error) as well as RMSE (Root Mean Square
Error) results. Lately, [23] provided prediction on SOC
and SOH by data-driven machine learning. [7] is a
state-of-the-art paper predict RUL using multi-channel
input from different cycles. We will use the same data-
set (NASA) and create an approach to change the
input engagement of data-driven highlights, trying to
outperform [7] in accuracy manner.

In the later sections, we will describe our approach
then present the experimental results with some anal-
ysis on the different attempts.

3 The Proposed Method

3.1 Data Analysis

In order to have the same data approach, we also use
4 NASA battery sets (B0005, B0006, B0007 and B0018)
similar to baseline [7]. The data will be used for train-
ing, validation and testing. We also have pre-processing
steps such as min-max normalization, outliers removal.
After that we respect the remaining noisy data and the
pre-processed portions are used to feed into the models.
The way we separate train/val/test is based on cross-
validation recommended by [7]

Figure 3 shows the sharing of train, validation and
test combinations that will be fed into our model. As
mentioned earlier, the test portion is not overlapped to
any part of training and validation separations. This
help the comparison of the models to be fair and
independent on training. The RMSE test loss is used
for model fine-tuning.

3.2 Data Extraction

There are two approaches in our data extraction.
Internal data of a cycle and global accumulation data
are considered.

3.2.1 Internal Cycle Extraction: Base on [17], we extract
those data points from which will best represent the
changing trend of charging cycle. Figure 4 shows dif-
ferent points inside a cycle. It is obvious that the first
part of the battery cycle is unstable in 30% timeline,
and is suggested to be a Non-sampling interval. The
middle part is observed to be not very much high-
variant, so we will extract 3 points. The close-end of
the cycle we archive data from 3 points. And finally,
we extract another 4 condensed data points by end of
the charging cycle. Totally we extract 11 points base on
it’s corresponding position at [35, 52, 70, 88, 90, 92, 94,
96, 98, 99, 100] of the whole rated 100 data points of
charging step. At each point, 3 information (Current,
Voltage, Temperature) are used.

The above internal channel-wise extraction create 3×
11 matrix data for a cycle.

3.2.2 Global Cycle Extraction: Base on [24], we will
accumulate global data. Initially, [24] suggested that we
should find x1, x2, x3, x4, x5. These 5 features represent
crucial characteristics of the battery at the current CC-
CV process.

• x1: Initial charge voltage.
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Figure 3. Cross validation and the method to separate train, val and test for the dataset [7].

Figure 4. Multi-channel data extraction [17].

• x2: CC charge capacity, calculated by accumulation
the rectangle ICC × t, where ICC is the constant
current in the charge, and t the duration of CC
period.

• x3: CV charge capacity, accumulated by the integral
of the area of decreasing current during CV period.

• x4: Final charge voltage (Voltage measured at bat-
tery terminal).

• x5: Final charge current (Current measured at bat-
tery terminal).

However, [17] explained that x1 is archived in the
non-sampling interval, which is not stable and should
not be consider. As the result we only take x2, x3, x4,
x5 into our consideration.

Figure 5 shows the global data that will be archived
and accumulated. Moreover, other global inputs that
will be taken into account are peak and SOH. To
find peak, observing the nature of SOH seasonality,
trending, and noise, we find that peaks maintain for
around 5 cycles and the nature impact deeply into
prediction accuracy. To decide a peak data point, we

Figure 5. Five charge-related features in an illustrative charge cy-
cle [24].

compare current value with mean value of previous
n = 5 SOH, base on a rated threshold. The peak data
is binary and lasts as long as the mention rule satisfies.

SOH global data is simply the regression SOH of
current cycle.

From the above global data, we construct 6 inputs
for a cycle. Therefore, to maintain the crucial extracted
features, we concatenate channel-wise internal data
with cycle-wise global portion. As the result we have
the matrix of (3 + 6)× 11 or 9 × 11 for each charging
cycle.

Similar to baseline [7] we will use n = 10 look
ahead cycles to predict SOH for m = 2 cycles. In loss
comparison, we mainly use result of the current cycle
m = 1 to analyse and fine-tune the models. Other
results of the later cycle are almost unused.

3.3 Baseline Model

Figure 6 is the best baseline model. In this structure,
they use a multi-channel extraction from n = 10 cycle.
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Figure 6. The many-to-many multi-channel baseline model [24].

Figure 7. The proposed data-driven model.

In each cycle, they extract S = 10 data points. And
at each data point within a cycle, the voltage V, the
current I and the temperature T are archived. This
encoding method provide feed data for LSTM decoder.
Finally, the output is the SOH of their next m = 2 cycles.

3.4 The Proposed Model

Observing the nature of the battery data, we have in-
troduced some changes in both encoder and decoder of
the prediction. First, as mentioned, we archived global
data of a cycle and concatenate them with channel-
wise V, I, T. This improvement is introduced at the
input layer. Second, there is an order of 11 data points
extracted in a cycle, and there is another order of
n = 10 input cycles which are engaged. Therefore, it
is a sequence-in-sequence (seq-in-seq) constraint in the
data. As the result, we introduce a Conv2DLSTM at
the encode layer to preserve the data spatial depen-
dency [25]. Finally, at the output layer, we introduce
peak as another portion of output. The peak data is
expected to create more engagement to loss functions
so that the output model can represent better with the
seasonality of battery data.

Figure 7 shows the structure of the proposed model.
Compare to the baseline multi-channel Figure 6, we
add a Conv2DLSTM layer after the normal LSTM on

the encoder. This layer extracts constraint from the
sequence of 11 channel-wise data points. After that,
the features are engaged into another sequence of 10
channel-wise cycles (seq-in-seq). Moreover, the multi-
task output let the model to be back propagated based
on both Ck+m and peakk+m output. The portion-weight
is a trainable parameter. As the result, by introducing
the above improvement artifacts, the proposed model
has been enabled with multi-channel, multivariate and
multitask configuration. Therefore, we aim to create
significant improvement in different experiments. The
next session shows our result recorded.

4 Experimental Result

Firstly we re-implement the [7] using the same
dataset [14]. We also reuse multi-channel approach and
cross-validation methodology. Besides, after some basic
data pre-processing, outliers removal and normaliza-
tion, we do not remove remaining noisy portions to
respect the variant nature of battery data. We have two
models working based on this approach named E1D1
and E2D2 coincide with number of LSTM layer(s) they
have in encoding and decoding layers. The E1D1 uses
one LSTM in encoding and one LSTM in decoding
approach while the E2D2 uses two LSTM layers in both
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Table I
The E1D1 Model Structure

Layer(type) Output Shape Number of Params

Input 10×36 -
LSTM 1 100 54800

Repeat vector 2×100 0
LSTM 2 2×100 80400

Time distributed 2×36 3636

Total params 138.836

Table II
The E2D2 Model Structure

Layer(type) Output Shape Number of Params

Input 10×36 -
LSTM 1 10×50 17400
LSTM 2 50 20200
LSTM 3 2×50 20200
LSTM 4 2×50 20200

Time distributed 2×36 1836

Total params 79.836

Table III
The Proposed Model Summary

Layer(type) Output Shape Number of Params

Input 10×11×7 -
LSTM 1 50 -
LSTM 2 50 -

Conv2DLSTM 1×9×32 31616
Flatten and Dense 5762×2 11524

Total params 43,140

Table IV
The Loss Summary

Methods RMSE
Loss

Multi-channel [7] with E1D1 0.045
Multi-channel [7] E2D2 0.040
Propose method - Multi-task - Without Conv2DLSTM 0.038
Propose method - Multi-task - Conv2DLSTM 0.033

encode and decode ends of the model. In the test, after
some normal fine-tuning steps, we archive the RMSE
loss of 0.045 and 0.040 for these two models. Tables I
and II show the number of trainable hidden parameters
work for the two models.

Next, we introduce some improvement in both multi-
task and multitask with Conv2DLSTM. Since the E2D2
is potential, we base on it to enhance the model. As the
result, we improve the performance and reduce the loss
consistently to 0.038 and 0.033. The summary is listed
in Table IV.

As expected, is is proved by experiments that our
proposed method works consistently better by both im-
prove multitask and Conv2DLSTM, base on the NASA
dataset.

5 Conclusion

We propose a data-driven approach to introduce some
improvement to a time-series LIB SOH prediction. Base
on the nature distribution of data, we develop dat all
input layer, the encode layer and the output multivari-
ate layer of the prediction. Even we have not spend
much time in fine-tuning, the proposed method can
create significant improvement (17.5%), compare to the
baseline.

The next steps from this research would be enhancing
the input data with different sources of datasets (from
NASA, CALCE and Oxford). After that, based on better
input, we will continuously study the data dependency
(data-driven) and introduce more model adjustment to
improve the model performance.
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