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Abstract– Network Functions Virtualization (NFV) is a new way of leveraging an Internet-of-Things (IoT) system to provide
real-time and highly flexible service creation. In an NFV-enabled Internet-of-Things (NIoT) system, several IoT functions
implemented as Virtual Network Functions can be linked as a service function chain to build a customized IoT service
quickly. It is important for an IoT service to be able to recover from a failure. However, the supply of a resilient IoT
service in an NIoT system is challenging due to the coordination of distributed VNF instances. In this paper, we formulate
the problem of resilient service coordination in an NIoT system as a mixed-integer linear programming model, namely
RSOd. The model offers the optimal resource allocation for minimizing service disruption when a failure happens at a
node of an NIoT system. We also develop two modified versions of RSOd for different use cases required by an IoT
provider. Further, two approximation algorithms are proposed to provide a resilient service for a large-scale NIoT system.
The evaluation results show that RSOd and its modified versions produce the optimal resource allocation in significantly
reduced time compared to previous work. The results suggest that an IoT provider should carefully select an appropriate
resource allocation strategy as it has to pay a resource cost to minimize the service disruption. The results also show that
our proposed priority-based heuristic algorithm outperforms an approximation algorithm based on Simulated Annealing
in terms of the service disruption and computation time.

Keywords– NFV, NFV-enabled Internet-of-Things, NIoT, optimization, resilient service.

1 Introduction

Many current Internet-of-Things (IoT) platforms rely
on back-end Edge Cloud computing for virtually un-
limited storage and processing capacity. However, the
creation of a new IoT service is fairly static with
respect to the dynamic association of IoT functions
deployed distributedly in an Edge Cloud system. Net-
work Function Virtualization (NFV) can overcome such
a limitation by providing a framework in which Virtual
Network Function (VNF) instances can be dynamically
linked together as a service function chain (SFC) for
the creation of flexible and real-time IoT services. An
integrated NFV-IoT platform can be used to effectively
operate many smart city applications, where the IoT
functions are deployed as VNFs [1]. We will refer to
such a virtualized IoT system based on NFV as NIoT.

While an NIoT system can offer the dynamic com-
position of an IoT service, it is challenging to provide
a resilient IoT service due to the coordination of dis-
tributed VNF instances. The disruption of services can
be caused by any system failure, such as a change in
system configuration and security issues. A resilient
NIoT system should rapidly reallocate IoT functions
affected by a failure to maintain a service continuum.
Previous studies have proposed several methods to

address various problems of a robust service in NFV
and IoT systems [2–5]. However, these solutions do not
take into account service coordination, a crucial aspect
of NFV in an NIoT system. Recently, Pham proposed an
optimization model and approximation algorithms for
service coordination based on SFC in NFV [6]. However,
the issue of system failure has not been considered
in the model. In addition, the proposed optimization
model is limited to a small-scale problem. Our work
is different as it finds an optimal resource allocation
solution for IoT service coordination in an NIoT system
under the presence of failures.

This paper is an extended version of our work pre-
sented at the 2022 international conference on Ad-
vanced Technologies for Communications (ATC) [7].
It extends the conference version paper by presenting
new results of resource allocation for a resilient service
in a large-scale NIoT system. Our main contributions
are as follows. First, we propose a mixed-integer linear
programming (MILP) model, namely RSOd, for the
problem of resilient service coordination in an NIoT
system. The RSOd model provides the optimal resource
allocation for minimizing the service disruption when a
failure occurs in an NIoT system. The model has the ad-
vantage of being adaptable for addressing a variety of
the resilient service coordination problem. Specifically,
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we develop two modified versions of RSOd (i.e., RSOr,
RSOm) for two use cases required by an IoT provider.
Second, we propose an approximation algorithm based
on Simulated Annealing and a heuristic algorithm to
find an approximate solution in a scenario comprising
hundreds of nodes and thousands of demands. Third,
we validate our proposed models and algorithms in real
and synthetic network topologies and provide sugges-
tions for an IoT provider to choose an appropriate ob-
jective function. The evaluation results show that RSOd,
RSOr, and RSOm can provide the optimal resource
allocation for a resilient service in an NIoT system. The
results suggest that an IoT provider should carefully
select an appropriate resource allocation strategy as
it has to pay a resource cost to minimize the service
disruption. In addition, the computation time of the
proposed optimization models significantly improves
in comparison to a previous optimization model of
resilient services in NFV presented in [4]. The results
also show that our proposed priority-based heuris-
tic algorithm outperforms an approximation algorithm
based on Simulated Annealing in terms of the service
disruption and computation time.

The rest of the paper is organized as follows. Sec-
tion 2 introduces some existing solutions for a resilient
service in IoT and NIoT systems. Section 3 presents
the system operation and the statement of the resource
allocation optimization problem for resilient service
coordination in an NIoT system. Section 4 presents
MILP models that provide the optimal allocation of
IoT functions for various use cases of resilient service
coordination. Section 5 describes our proposed approx-
imation solutions based on Simulated Annealing and
heuristic approaches for a large scale IoT system. In
Section 6, our proposed optimization models are eval-
uated based on three important performance measures,
including a measure of service disruption, resource
cost, and computation time. Finally, Section 7 concludes
this paper with several potential research directions for
future work.

2 Related Work

The use of NFV for IoT virtualization is an essential
approach to processing a huge amount of data in an
IoT system [8]. One of the most critical issues that has
received much research attention is the resilience of
services in an NFV-enabled IoT system. Many solutions
have been proposed for service resilience in an IoT
system [9–12]. For example, Abreu et al. designed a
resilient IoT architecture, including IoT service, mid-
dleware, and infrastructure layers for smart cities [9].
However, the architecture does not support the connec-
tion between IoT services in different cloud systems.
Ratasich et al. discussed the self-healing components in
one node of a smart sensor infrastructure, which is not
applicable to a chain of services [11]. In some research,
the efficient design for data processing and routing
in Internet of Vehicles (IoV) has been studied [13–15].
Si et al. proposed a resilient routing protocol to collect

data from sensors in intra-car networks [13]. Malik et al.
evaluated the performance of reliable packet dissem-
ination protocols in vehicular ad hoc networks [14].
Muhammad et al. used mobile edge computing to
improve the performance of data processing when the
connections among vehicles are interrupted [15]. How-
ever, the coordination of distributed services has not
been considered in an IoV design. Several optimization
models for edge cloud computing’s robust services
have been proposed [16, 17]. Shahid et al. developed a
load-balancing algorithm with fault tolerance in a cloud
computing system [16]. Luo et al. discussed the collab-
oration for resource scheduling in edge computing [17].
However, the feature of service function chaining has
not been considered in these proposals. In summary,
these and other solutions of service resilience in a
general IoT system, IoV or cloud computing cannot
apply to an NIoT system because IoT functions in NIoT
can be installed in various data centers and linked to
one another to form a customized service.

Some studies have considered the resilient service
problem in an NIoT system. Some approximate solu-
tions have been proposed. For example, in [2], for the
purpose of improving the robustness of NFV services
implemented in a distributed edge network, the au-
thors proposed a proactive fail-over technique based on
failure prediction. In [3], the authors devised heuris-
tics to boost an IoT network’s fault tolerance when
a system failure happens. In [5], the authors applied
artificial intelligence approaches to give prediction for
telemedicine applications. These solutions, however,
do not take into account service function chaining, a
crucial aspect of NFV. Recently, Pham proposed an
optimization model and approximation algorithms for
service function chaining in NFV [6]. However, the
system failure issue has not been considered in the
model. Our work is different as it determines an op-
timal resource allocation solution for the coordination
of IoT services in an NIoT system while taking into
account failures.

3 System Description

An NIoT system is an IoT virtualization framework
based on NFV, including three components: NFV In-
frastructure (NFVI), VNFs, and NFV Management and
Orchestration (MANO) [1]. NFVI contains physical re-
sources of NFV nodes, such as computation and stor-
age, virtualized by cloud technologies. While a VNF
instance in NFV is a traditional network function im-
plemented as a software component packaged into a
virtual machine image, a VNF instance in NIoT is an
IoT function, e.g., smart metering, access control, and
data compression. The MANO component covers the
lifecycle management of physical resources and VNFs.
A resource allocation strategy for service resilience can
be deployed as a component of MANO.

In an NIoT system, IoT functions can be coordinated
in a service function chain to build an IoT service.
For example, an SFC of a video surveillance service
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is composed of three IoT functions, including video
compression, access control, and video decompression.
MANO allocates NFVI resources for an IoT service
requested by a user. When a system failure such as a
configuration change or security issue happened at an
NFV node, MANO should quickly find a new location
of an IoT function affected by the failure.

The NIoT system G = (V, E) contains physical nodes
V and links E. Each node v ∈ V has a compute
capacity rn

v , i.e., the number of CPU cores. Each link
e ∈ E associated with the beginning node ie and the
ending node je has a bandwidth capacity rl

e. The system
supports a set of VNF types F. A VNF type u ∈ F
requires some cores ηu to process a unit of traffic
volume. The amount of time that node v needs to route
a unit of traffic volume is the routing delay δ2v. The
amount of time needed by node v to process VNF type
u is the processing delay µvu. λn

v are the failure state
of node v. λn

v ∈ [0, 1] represents the percentage of node
v ’s resource remaining after a failure happened at v.
λn

v = 0 if node v completely fails.
The NIoT system provides a set of SFCs Ω ={

Si =
(
ui1, . . . , uij, . . . , uin

)}
where uij is the jth VNF of

SFC Si. We denote the service demand set by Γ = {d}.
A service demand d ∈ Γ is defined by source node sd,
destination node td, SFC Sd ∈ Ω, SFC delay δ1d, and
bandwidth volume bd.

A NIoT system must find a new resource allocation
solution for IoT functions after a failure in order to
meet the demand requirements. We assume that the
NIoT system employs one of the popular intra-routing
protocols, such as Open Shortest Path First (OSPF),
which uses the shortest path first algorithm for path
selection. MANO optimizes the new location of IoT
functions along the shortest path. The performance
of an NIoT system may be dramatically impacted by
a reallocation strategy, including the placement and
coordination of IoT functions. The problem of resource
allocation for resilient service coordination is stated
as follows:

Problem 1 (Resource Allocation Optimization for Re-
silient Service Coordination (RS)). Given an NIoT system
G, find a resource allocation solution for a set of service
demands Γ, in order to minimize the system disruption
when a failure occurs under constraints on the availability
of system resource and the coordination of IoT functions.

4 Optimization Model for Resilient

Service Coordination

We propose an MILP model (i.e., RSOd) to obtain the
optimal resource allocation for the RS problem. We
represent the solution by the following variables:

• l2 =
(

l2epsdtd

)
is the new link selection for traffic

routing when a failure occurs. If path psdtd uses
link e, l2epsdtd

= 1, otherwise, l2epsdtd
= 0.

• h2 =
(

h2vpsdtd

)
is the new node selection for traffic

routing when a failure occurs. If path psdtd uses
node v, h2vpsdtd

= 1, otherwise, h2vpsdtd
= 0.

• y2 = (y2vdi) is the new IoT function placement
when a failure happens. If the ith function of de-
mand d is supplied by node v, y2vdi = 1, otherwise,
y2vdi = 0.

Table I provides a summary of RSOd’s notations.

4.1 Resource Allocation for Service Demand

The routing decision variables l2 and h2 are de-
termined before we find a placement solution as we
assume that an NIoT system uses the shortest path
first algorithm for path selection. The service placement
condition is as follows:

∑v y2vdi = 1, ∀d, ∀i, (1)

y2vdi ⩽ h2vdi, ∀v, ∀d, ∀i. (2)

Formula (1) guarantees that the ith IoT function of
demand d is allocated by one node in the system.
Formula (2) assures that the ith IoT function of demand
d is supplied by node v only if the path of demand d
contains v.

The system loses a part of the compute capacity when
a node fails. The condition of the available compute
capacity is as follows:

∑d,i bdy2vdiηudi ⩽ rn
v − rn

v λn
v , ∀v. (3)

Formula (3) ensures that the total number of cores
allocated by node v to all IoT functions of all demands
is less than or equal to the remaining amount of cores
of node v after a failure.

The delay of a service demand includes the routing
and function processing delay. The condition of a delay
guarantee is as follows:

∑v δ2vh2vpsdtd
bd + ∑v µvudi ∑i y2vdi ⩽ δ1d, ∀d. (4)

Formula (4) ensures that the sum of the total routing
delay along demand d’s path and the total function
processing delay of all IoT functions required by de-
mand d is less than or equal to the delay requirement
of demand d.

4.2 Service Coordination

We use two extra variables yσ
2vdi and ȳσ

2edi to express
the condition of service coordination. If a node between
sd and v on demand d’s path allocates function udi,
yσ

2vdi = 1, otherwise yσ
2vdi = 0. If link e belongs

to demand d’s path, and a node between sd and ie
allocates function udi, ȳσ

2edi = 1, otherwise ȳσ
2edi = 0.

The condition of service coordination is as follows:

y2vdi ⩽ yσ
2vd(i−1), ∀v, ∀d, ∀i ⩾ 1, (5)

yσ
2vdi = y2vdi + ∑{e:je=v} ȳσ

2edi, ∀v, ∀d, ∀i, (6)

l2psdtd e + yσ
2iedi − 1 ⩽ ȳσ

2edi ⩽ l2psdtd e, ∀e, ∀d, ∀i, (7)

ȳσ
2edi ⩽ yσ

2iedi, ∀e, ∀d, ∀i. (8)

Formula (5) ensures that function udi can be allocated
by node v if and only if function ud(i−1) is provided by
either v or its previous node along demand d’s path.
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Table I
Summary of Main Notations

Input Parameters
G = (V, E) The NIoT system contains physical node V and links E.
rn

v Node v’s compute capacity
rl

e Link e’s bandwidth capacity
ie Link e’s beginning node
je Link e’s ending node
F The set of IoT function types
ηu The number of CPU cores necessary for processing a unit of flow data using function type u ∈ F
Ω The set of SFCs Ω =

{
Si =

(
ui1, . . . , uij, . . . , uin

)}
where uij is the jth IoT function of SFC Si

Γ = {d} The service demand set
sd Demand d’s source node
td Demand d’s destination node
bd Demand d’s bandwidth volume
Sd Demand d’s SFC
δ1d Demand d’s SFC delay
δ2v Node v’s routing delay for a traffic unit
µvu Node v’s processing delay of function type u
γvv′udi The time amount necessary to migrate demand d’s ith function from v to v′

ρvv′ The time amount required to transfer a data volume on the minimum-weight path from v to v′

κu The data volume of function type u
λn

v The percentage of node v’s resource remaining in the failure state

l1 =
(

l1epsd td

)
The link selection in the current routing solution: If path psdtd uses link e, l1epsd td

= 1, otherwise,
l1epsd td

= 0

h1 =
(

h1vpsd td

)
The node selection in the current routing solution: If path psdtd uses node v, h1vpsd td

= 1, otherwise,
h1vpsd td

= 0
y1 = (y1vdi) The current placement of IoT functions when a failure happens. If node v provides the ith function of

demand d, y1vdi = 1, otherwise, y1vdi = 0.
Output variables

l2 =
(

l2epsd td

)
The link selection in the routing solution when a failure occurs: If path psdtd uses link e, l2epsd td

= 1,
otherwise, l2epsd td

= 0

h2 =
(

h2vpsd td

)
The node selection in the routing solution when a failure occurs: If path psdtd uses node v, h2vpsd td

= 1,
otherwise, h2vpsd td

= 0
y2 = (y2vdi) The new placement of IoT functions when a failure happens. If the ith function of demand d is supplied

by node v, y2vdi = 1, otherwise, y2vdi = 0.

Formula (6) assures that yσ
2vdi = 1 if and only if function

udi is allocated by v or its previous node along demand
d’s path. Formulas (7) and (8) ensures that ȳσ

2edi = 1 if
and only if function udi is allocated by either ie or its
preceding node, and demand d path contains link e.

4.3 Minimizing Service Disruption
The measure of service disruption is defined as a

derived unit of time required to restore all service
demands after a failure. We denote by γvv′udi

the time
amount required to migrate demand d’s ith function
from v to v′. ρvv′ is the time amount required to transfer
a data volume on the shortest path from v to v′. κu is the
data volume of function type u. The service disruption
measure of an IoT function moved from v to v′ is
given by:

γvv′udi
= ρvv′κudi . (9)

An extra variable zvv′di is used to compute the service
disruption measure of the NIoT system. After a failure,
if demand d’s ith function is changed from v to v′,
zvv′di = 1, otherwise, zvv′di = 0. We denote by y1 =

(y1vdi) the current IoT function placement. If node v
allocates demand d’s ith function, y1vdi = 1, otherwise,
y1vdi = 0. The compatibility of zvv′di is given by:

zvv′di ⩽ y1vdi, ∀v, ∀v′, ∀d, ∀i, (10)
zvv′di ⩽ y2v′di, ∀v, ∀v′, ∀d, ∀i, (11)

y1vdi + y2v′di − 1 ⩽ zvv′di, ∀v, ∀v′, ∀d, ∀i. (12)

Formulas (10)–(12) assure that zvv′di = 1 if and only
if y1vdi = 1 in the current solution of IoT function
placement and y2v′di = 1 in the new solution of IoT
function placement, otherwise, zvv′di = 0.

The service disruption measure of the NIoT system
after a failure is as follows:

Ud = ∑v,v′ ,d,i zvv′diγvv′udi
. (13)

The RSOd model include the objective function de-
fined by formula (13) and the constrains described
by formulas (1)–(12). The RSOd model provides the
optimal IoT function placement for service demands
after the routing path selection, which is determined
by a common routing protocol.
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4.4 Extensions of RSOd

We can modify RSOd to find the optimal resource
allocation to service demand for different requirements
of IoT providers. We model the two following use cases
as examples of RSOd extensions. In the first use case, we
consider that an IoT provider can focus on minimizing
resource usage during pick load. Let cv be the cost for
providing one core at node v. The objective function
that computes the resource cost is as follows:

Ur = ∑d,v,i bdy2vdiηudi cv. (14)

We name the optimization model that minimizes the
resource usage as RSOr. Formula (14) describes the
objective function of RSOr. Formulas (1)–(12) are the
constrains of RSOr.

In the second use case, an IoT provider wants to
select the solution with the lowest resource usage when
there exist many optimal solutions of VNF allocation
that minimize the service disruption measure. We de-
note by α a scale parameter. The objective function is
modified as follows:

Um = Ud + αUr. (15)

Cococcioni et al. presented a principle of selecting
a value for α [18]. The general idea is to multiply
the most important objective by one and the second
by a small number. We suggest α = 1/max Ur. By
multiplying Ur and α in the objective function, we
prioritize minimizing the service disruption measure
more than reducing the resource usage. We can select
a different value of α to obtain a trade-off between the
priority of the service disruption measure and that of
the resource usage.

We name the optimization model that takes into
account the optimization of both the service disruption
measure and resource usage as RSOm. The objective
function and the constraints of RSOm are formula (15)
and formulas (1)–(12), respectively. The above discus-
sions demonstrate that RSOd can be adaptable for
different use cases required by an IoT provider.

5 Approximate Solutions to Resource

Allocation for Resilient Service

Coordination

The there proposed models based on MILP (i.e., RSOd,
RSOr, RSOm) provide the optimal resource allocation
for resilient service coordination in an NIoT system af-
ter a failure. However, we cannot solve the optimization
models in a large-scale NIoT system. In this section, we
develop two algorithms based on approximation and
heuristic approaches to find an approximate solution
to the RS problem in a large-scale NIoT system.

5.1 Simulated Annealing-based Approximation
Algorithm for RS

We propose an approximation algorithm, namely
RSS, based on the Simulated Annealing (SA) [19]. In

Algorithm 1 : Simulated Annealing-based approxima-
tion algorithm for RS

1: function RSS(G, Γ, y1)
2: Initialize T, T0, Tn, ϕ, τ
3: Vd ← a sequence of nodes on the demand path

from sd to td
4: Find an initial solution Om
5: O∗m ← Om
6: Compute y∗2 from O∗m
7: while T ≥ Tn do
8: for n← 1 to ϕ do
9: repeat ▷ Find a neighborhood solution

10: (d, i, v)← a random tuple in Om
11: js ← index of v in Vd where

y2vd(i−1) = 1
12: jt← index of v in Vd where y2vd(i+1)=1
13: j← a random node in [js, jt]
14: v′ ← Vd(j)
15: O

′
m ← Replace(d, i, v, v′, Om)

16: until O′m is feasible
17: Compute y2 from Om
18: Compute y′2 from O′m
19: if Ud(y′2, y1) < Ud(y2, y1) then ▷ The

neighborhood solution is better
20: Om ← O′m
21: if Ud(y′2, y1) < Ud(y∗2 , y1) then
22: O∗m ← O′m
23: y∗2 ← y′2
24: end if
25: else ▷ The current solution is better
26: ∆← Ud(y′2, y1)−Ud(y2, y1)
27: ε← a random number in the range 0

to 1
28: if exp(−∆/T) > ε then
29: Om ← O′m ▷ Move to the

neighborhood solution with a probability
30: end if
31: end if
32: end for
33: T ← C(T)
34: end while
35: return y∗2 , x∗2
36: end function

RSS, we develop the representation of the resource allo-
cation solution and the neighborhood selection function
for the RS problem.

A resource allocation solution for the RS prob-
lem Om = ((d, i, v) : d ∈ D, i ∈ Sd, v ∈ V) represent
that node v provides the ith function of demand
d. We add a dummy function to the source and
destination nodes of a service demand for present-
ing the neighborhood selection. The dummy func-
tion is an IoT function that does not require any re-
sources. The SFC of demand d is modified as follows:
Sd =

(
ud0, ud1, . . . , uij, . . . , uin, ui(n+1)

)
where ud0 and

ud(n+1) are the dummy functions and n is the original
number of IoT functions requested by demand d. We
describe all steps of RSS in Algorithm 1.
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RSS includes the While loop (i.e., line 7) and the
For loop (i.e., line 8). RSS stops when the value of the
temperature parameter T is less than that of the stop
temperature parameter Tn. Tn is close to zero. The initial
value of T is defined by T0, which can be the maximal
value difference of the objective function. T decreases
by the cooling function C(T) after one iteration of the
While loop. A simple cooling function is C(T) = τT for
τ ∈ (0, 1).

RSS runs the For loop for each T. The number of iter-
ations of the For loop is denoted by ϕ. RSS repeatedly
changes the current solution to another feasible solution
in the loop by a neighborhood selection procedure.
Let Om be an initial solution. In the neighborhood
selection (i.e., line 9–16), we first randomly select the
placement of an IoT function of a demand in the
current solution (i.e., (d, i, v) ∈ Om). We then build
a new solution by replacing node v with a feasible
node v′ (i.e., Replace(d, i, v, v′, Om)). The neighborhood
selection process is repeated to identify a new feasible
solution (i.e., line 16).

After RSS obtains a new feasible solution, RSS re-
places the current solution with the neighborhood so-
lution if the neighborhood solution is better than the
current solution (i.e., lines 19–24). Otherwise, to over-
come local optimization, RSS probabilistically switches
the current solution to the neighborhood solution (i.e.,
lines 25–30). The computation time and approximation
of RSS’s solution are controlled by ϕ and C(T).

5.2 Priority-based Heuristic Algorithm for RS
We propose a priority-based heuristic algorithm,

namely RSP, to find an approximate solution to resource
allocation for resilient service coordination in a large-
scale NIoT system. The main idea of RSP is based on
some priority indexes of demand and node selection.
We describe all steps of RSP in Algorithm 2.

For the demand selection process (i.e., lines 2–5), RSP
only considers the list of demands whose path is af-
fected by a failure. RSP sorts the list in descending order
of the total computing resources necessary to provide
all functions of a demand. We argue that the number
of feasible resource allocation solutions to a demand
increases due to the reduction of the fragmentation of
computing resources stored in separate nodes when
we process a demand that requires a large number
of computing resources first. Hence, RSP might find
a good approximate solution. RSP then processes all
demands one by one in the list.

For the node selection process of each demand d (i.e.,
lines 6–18), RSP begins by finding the first node on
path psdtd that can provide an IoT function required
by d. It then determines the best node defined by
index function Ψ(v) for an IoT function in the reverse
sequence in SFC (i.e., lines 14–16). Let ηv be the number
of psdtd that contains v for all d ∈ Γ f . The index
function of node selection for an IoT function is defined
as follows:

Ψ(v) =
rn

v
ηv

. (16)

Algorithm 2: Priority-based heuristic algorithm for RS
1: function RSP(G, Γ, y1)
2: Γ f ← The list of demands whose path is affected

by a failure
3: Sort Γ f in descending order of the total number

of cores necessary to provide all functions of a
demand

4: Find psdtd for all d ∈ Γ f
5: for all d ∈ Γ f do
6: Ωd ← ∅ ▷ Initialize the list of nodes

providing Sd
7: for all udi ∈ Sd, i = 1 . . . |Sd| do
8: vi ← the first node on path psdtd that can

provide udi
9: Ωd ← Ωd ∪ {vi}

10: end for
11: Return failure if solution not found
12: v|Sd |+1 ← td
13: for all udi ∈ Sd, i = |Sd| . . . 1 do
14: P← the list of nodes that can provide udi

along path psdtd from vi to vi+1
15: Find v∗ ← arg max

v∈P
Ψ (v) ▷ Use the index

function to find the best node
16: Replace vi ∈ Ωd with v∗ if node found
17: Update the compute capacity of vi and v∗
18: end for
19: end for
20: return Ωd
21: end function

Using the index function, we select a node whose
remaining resources are maximized for an IoT function
when considering the possibility of resource sharing in
demand paths containing a similar node.

6 Evaluation

In this section, we evaluate our proposed optimiza-
tion models and approximation solutions of resource
allocation for resilient service coordination in an NIoT
system. We first present the scenarios and parameters
in our evaluation using synthetic topologies and real-
world datasets. We then analyze the model perfor-
mance in terms of the service disruption measure, re-
source cost, and computation time. We use the optimal
solution obtained by RSO as a baseline solution for
analyzing the performance of RSS and RSP. We also
discuss a suggestion to an IoT provider for efficiently
supplying users with a resilient service.

6.1 Scenarios and Parameters Setting

Our evaluation scenarios include the Geant, Barabási-
Albert (BA), Waxman (WA) topologies. The Geant
topology describes the 2012 Europe backbone network,
composed of 40 nodes and 61 links [20]. The BA and
WA topologies are generated by the Barabási-Albert
and Waxman models, respectively [21]. They consist of
50 nodes. In the BA topology, we initially generate four
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Figure 1. Service disruption.
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Figure 2. Resource cost.

nodes. We then repeatedly add a new node and connect
it to four existing nodes. The WA topology is built using
a link density probability of 0.9. We build a network
topology with a node fault rate of 20%. The percentage
of node v’s resource remaining after a failure is chosen
randomly between 0 and 1.

The source and destination nodes are chosen ran-
domly in each service demand. There is a range of one
to thirty milliseconds for the SFC delay. The bandwidth
requirement ranges from 1 Gbps to 5 Gbps. Four types
of IoT functions are implemented as VNFs in an eval-
uation scenario. A VNF type may require between one
and two CPU cores to handle a unit of traffic volume.
The ordered list of IoT functions is chosen at random in
each service demand. The number of cores available per
node is 200. We give each link’s capability a bandwidth
value of 80 Gbps. The link weight value ranges from 1
to 3. The processing delay of an IoT function and the
routing delay for a traffic unit are created randomly
and range from 10 to 100 microseconds at a node.

We implemented RSOd, RSOr, RSOm in CPLEX [22].
We used an x86 with a four-core 2.60 GHz Intel pro-
cessor and 8 GB memory to solve these models when
varying the number of service demands between 10 and
100 demands.

6.2 The Performance of Optimization Models
First, we compute the service disruption measure

provided by the three optimization models in the
Geant, BA, and WA topologies. Figure 1 show that
the service disruption measure of RSOd and RSOm is
better than that of RSOr. This was to be expected since
the objective function of RSOr does not include the
service disruption measure. RSOd and RSOm obtain the

similar service disruption measure because RSOm gives
a high priority to the service disruption measure in
its objective function. We also observe that the service
disruption measure of RSOd in BA is slightly less than
that in WA. This occurs because the BA network is quite
dense (i.e., the number of links in BA is 253 and the
number of links in WA is 98), letting an MILP model
have better alternative solutions to optimize through
the solution space.

Second, we compare the resource cost of different
optimization models. Figure 2 shows that RSOr is better
than other models and RSOd is the worst in term of
the resource cost. On the contrary, Figure 1 shows that
RSOd is better than other models in terms of the service
disruption measure. It refers that an IoT provider pays
some resource cost to minimize the service disruption
measure. RSOm is slightly better than RSOd in the BA
topology because RSOm takes into account both the
service disruption measure and resource cost while
RSOd only consider the service disruption measure.
The results suggest that an IoT provider’s possible
resource allocation strategy is to select an appropriate
value of α for a tradeoff between the service disruption
measure and resource cost.

Finally, we evaluate the computation time of our
proposed optimization models. Figure 3 plots the com-
putation time in the Geant, BA, and WA topologies
when varying the number of service demands between
10 and 100. In such topologies, the PT-O optimization
model for a resilient NFV service presented in [6] was
unable to provide an optimal resource allocation. PT-
O can produce the optimal result for a scenario of 22
nodes, 59 links, and 64 demands. Our proposed models
can obtain the optimal solution in an acceptable time
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Figure 3. Computation time.
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Figure 4. Comparison between the approximate solution with the optimal solution in terms of the service disruption measure.
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Figure 5. Comparison between the approximate solution with the optimal solution in terms of the resource cost.
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Figure 6. Comparison between the approximate solution with the optimal solution in terms of the computation time.

for a scenario of 50 nodes, 353 links, and 100 demands,
which is a significant improvement.

6.3 The Performance of RSS and RSP
We first compare approximate solutions produced by

RSS and RSP with the optimal solution obtained by
RSOd as we use Ud as the objective function in RSS
and RSP. We compute the service disruption measure,
resource cost, and computation time of RSS and RSP

when varying the number of demands between 10
and 100. To depict the difference in the computation
time, we use a base-ten logarithmic scale for the y-
axis in Figure 6. The results presented in Figures 4, 5,
and 6 show that RSS can provide a better approximate
solution compared to RSP in the service disruption
measure. However, it is very time-consuming for RSS
to obtain its solution.

We then evaluate the performance of RSS and RSP
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Figure 7. Comparison between RSS and RSP in terms of the service disruption measure in a large-scale scenario.

in a large-scale NIoT system. The number of demands
is between 100 and 1000. In all scenarios, it takes less
than 3 seconds for RSP to find its solution to the RS
problem. We collect the results obtained by RSS after 10
minutes even though it does not finish for all scenarios
in which the number of demands is more than 200.
Figure 7 shows that RSP outperforms RSS in the service
disruption measure when we restrict the running time
of algorithms in a large-scale NIoT system. Hence,
when it is required to obtain an approximate solution
in a limited time, an IoT provider should consider RSP
as its resource allocation strategy for resilient service
coordination.

7 Conclusions

We addressed the optimization problem of resource
allocation for resilient service coordination in an NIoT
system. We developed an MILP model (i.e., RSOd) that
finds the optimal resource allocation to minimize the
service disruption after a failure. The model takes into
account an ordered list of IoT functions in a service
request, the shortest path routing, and the reallocation
of IoT functions in an NIoT system when a failure
occurs. We discussed two extended versions of the
model, including RSOr and RSOm for two different use
cases required by an IoT provider. For a large-scale
NIoT system, we developed the RSS algorithm based on
Simulated Annealing and the RSP algorithm based on a
heuristic approach to find an approximate solution. The
evaluation results show that RSOd, RSOr, and RSOm
can archive the optimal resource allocation solution for
resilient services in an NIoT system after a failure. They
suggest that an IoT provider should carefully select
an appropriate resource allocation strategy to obtain a
tradeoff between the optimization of service disruption
measure and that of the resource cost. In addition, our
proposed optimization models significantly outperform
a previous optimization model in the computation time.
The results also show that RSP is better than RSS
in terms of the service disruption and computation
time when the number of service demands is large.
Our future work will address the dynamics of service
demand parameters and various performance metrics
as in [6, 23]. We also can consider a more general
coordination model or the federation of IoT providers
for enhancing service quality.
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