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Abstract– In estimation theory, the Fisher information matrix (FIM) is a fundamental concept from which we can infer the
well-known Cramér-Rao bound. A closed-form expression of the FIM is often intractable due to the lack or sophistication
of statistical models. In this paper, we propose a Fisher Information Neural Estimator (FINE) based on neural networks
and a relation between the f -divergence and the Fisher information. The proposed method produces an estimate of the
FIM directly from observed data. It does not require knowledge or an estimate of the probability density function (pdf),
and is therefore universally applicable. The proposed FINE is applicable for not only deterministic parameters but also
random parameters. We show via numerical results that the proposed FINE can provide a highly-accurate FIM estimate with
a low-computational complexity. Furthermore, we also propose an accelerated FINE version which can be used for scenarios
with a high parameter dimension. Finally, we develop an algorithm to choose an appropriate size of the employed neural
networks.

Keywords– Fisher information estimation, Cramér-Rao bound, neural networks.

1 Introduction

Fisher information is a well-known and well-defined
concept in mathematical statistics, which is defined as
a measure of the amount of information that a random
variable carries about some unknown parameters. In
estimation theory, the inverse of the Fisher information
directly gives us the Cramér-Rao bound (CRB), which
is a well-known lower bound on the variance of any
unbiased estimator of the unknown parameters. There
are many other areas in which the Fisher information
is applied to, e.g., Bayesian statistics, frequentist statis-
tics, optimal experimental design, computational neu-
roscience, physical laws, biology, and machine learn-
ing [1–3].

Analytically, a closed-form expression of the Fisher
information matrix (FIM) might be obtained by taking
the expectation of the Hessian matrix of the log likeli-
hood function (the score function). Unfortunately, such
a straightforward computation is often impossible due
to unknown statistical models [4, 5]. Even in circum-
stances where the statistical model is available, a closed-
form expression of the FIM can still be intractable
due to model sophistication. This difficulty raises the
significance of developing FIM estimation methods.
Donoho [6] showed that one cannot generally give a
confidence interval for a functional of some unknown
density without prior information. However, one can
give a lower confidence bound, e.g., the Fisher informa-
tion, for such functionals. Hence, the lower confidence
bound can be used as an estimate of the true Fisher

information where the confidence level is computed
using the Kolmogorov distance. Another bound on the
Fisher information is studied in [7]. The author used
a spline interpolation to obtain the minimum Fisher
information among all the distributions from which the
observations were made.

The estimation of the FIM can be divided into two
categories: plug-in and non-plug-in [8, 9]. In the plug-
in category, the strategy is to first estimate the prob-
ability density function (pdf) based on the observed
data and then use the pdf estimate for a numerical
computation of the FIM. Plug-in estimators had not
been available until the introduction of a kernel family
of pdf estimators by Rosenblatt [10]. After that, kernel-
based methods for estimating the derivative of the pdf
or the functionals have been studied extensively in the
literature [11–14]. Particularly, Bahattacharya proposed
the first Fisher information estimator in [11] and intro-
duced some error bounds on density and its derivative
estimation. More recently, in [15], Spall proposed a
Monte Carlo resampling-based (MCR) method for FIM
estimation. The MCR method first estimates the pdf
for each of a set of perturbed experiments and then
numerically computes the gradient of the log density
function before sample averaging. Another method for
FIM estimation was introduced in [16], which also esti-
mates the pdf using the observed data and then obtains
the derivatives of the pdf based on finite-difference
approximation. This method is based on an algorithm
called Density Estimation using Field Theory, which
suffers from "the curse of dimensionality", and the
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implementation is only suitable for a small dimension.
Unlike the plug-in methods, the strategy of non-plug-in
methods is to directly estimate the FIM based on the
observed data. This non-plug-in strategy is particu-
larly suitable for circumstances where the system is a
black box whose operating parameters are tunable, e.g.
controlled experiments [17–19]. One can observe data
from the system for various settings of the parameters.
An example of non-plug-in FIM estimation methods is
in [20], which is based on a relation between the f -
divergence and the FIM.

The strategy of plug-in methods is straightforward,
but an accurate estimate of the pdf may not always
be possible or is very difficult to obtain in scenarios
where the underlying pdf is sophisticated. Non-plug-
in methods do not rely on pdf estimation since the
FIM is directly estimated from the observed data, and
thus they are relieved of the difficulties in pdf esti-
mation. However, existing non-plug-in methods like
the one in [20] often suffer from problems of having
a high computational complexity, requiring very large
data sets for accurate estimation, or being specifically
developed for systems where the operating parameters
are deterministic.

Motivated by the above discussion and a recently de-
veloped mutual information estimation method in [21],
we propose a non-plug-in FIM estimator, referred to as
Fisher Information Neural Estimator (FINE), which has
several advantages such as having a low computational
complexity, high estimation accuracy, and applicable
for both cases of deterministic and random parameters
with high dimensions. It should also be noted that FINE
employs neural networks and thus takes advantages
of their nice properties such as the ability to learn
non-linear and complex relationships and having low
computational complexities.

The contributions of this paper are summarized
as follows. First, we propose FINE – a Fisher infor-
mation estimator based on neural networks for the
case of deterministic parameters. The proposed FINE
is based on a relation between the Fisher information
and the f -divergence, which was exploited in a previ-
ous work [20]. However, unlike [20] which computed
the f -divergence by using the Friedman-Rafsky (FR)
statistic [22], FINE computes the f -divergence by neural
networks. Compared to [20], FINE has not only higher
estimation accuracy but also a lower computational
complexity.

Second, we show that the proposed FINE framework
can be used for the case of random parameters, i.e.,
FINE is applicable for the Bayesian Fisher information
estimation problem. We prove that the relation between
the Bayesian Fisher information matrix (B-FIM) and the
f -divergence follows an expression that is similar to
the case of deterministic parameters. To validate the
efficacy of the proposed FINE in the Bayesian frame-
work, we carry out some simulations about dynamical
phase offset estimation in a communication system.
Numerical results show that the proposed FINE gives
a better estimation accuracy compared to an existing
asymptotic bound.

Third, we propose an accelerated FINE version which
is suitable for scenarios where the parameter dimension
is high. More specifically, a minimum number of pa-
rameter perturbations is used and the least-square (LS)
estimator in the FINE version is not required. These sig-
nificantly reduce the computational complexity. Finally,
we develop an algorithm for choosing an appropriate
size of the neural networks used in the proposed FINE
and accelerated FINE.

The remainder of this paper is organized as follows.
In Section 2, we start with a brief review of Fisher
information, f -divergence, and their relationship. Then
we conclude the section with a problem statement and
related work. Section 3 presents the proposed FINE for
both cases of deterministic and random variables. A
computational complexity analysis is given in Section 4.
The accelerated FINE is also proposed in this section.
Simulations are carried out in Section 5 for validation
and performance comparison. Section 5 also presents
an algorithm for choosing the neural network size.
Finally, Section 6 concludes the paper.

Notation: Upper-case and lower-case boldface letters
denote matrices and column vectors, respectively. E[·]
represents expectation. The operator | · | denotes the
absolute value of a number and the operator ∥ · ∥F
denotes the Frobenius norm of a matrix. The transpose
is denoted by [·]T . The symbol N (·, ·) represents the
normal distribution, where the first argument is the
mean and the second argument is the variance or the
covariance matrix. R denotes the set of real numbers.

2 Background and Problem Statement

2.1 Fisher Information and f -divergence

2.1.1 Fisher Information: Consider a random variable
X whose pdf p(x|θ) is parameterized by θ ∈ Rd, a vec-
tor of d unknown parameters. When θ is deterministic,
the FIM F(θ) is defined as follows [23]:

F(θ) = EX|θ

[(
∇θ log p(x|θ)

)(
∇θ log p(x|θ)

)T
]

= −EX|θ
[
Hθ

(
log p(x|θ)

)]
, (1)

where ∇θ log p(x|θ) and Hθ

(
log p(x|θ)

)
respectively

denote the gradient and the Hessian matrix of the
score function log p(x|θ) with respect to θ. In case the
parameter vector θ is random, the B-FIM B is used
instead [24, 25]

B = EX,θ

[(
∇θ log p(x, θ)

)(
∇θ log p(x, θ)

)T
]

= −EX,θ
[
Hθ

(
log p(x, θ)

)]
, (2)

where p(x, θ) is the joint pdf of X and θ.
2.1.2 f -divergence: For any convex function f such

that f (1) = 0, the f -divergence between two probability
distributions p(x) and q(x) is defined as a function
D f (p∥q) that measures the difference between p(x) and
q(x) [26]:

D f (p∥q) = Eq

[
f
(

p(x)
q(x)

)]
=

∫
q(x) f

(
p(x)
q(x)

)
dx. (3)



T. T. Duy et al.: Fisher Information Estimation using Neural Networks 3

The Kullback-Leibler (KL) divergence is a special case
of the f -divergence where f (t)= t log(t) and is given as

DKL(p∥q) = Ep

[
log

(
p(x)
q(x)

)]
=

∫
p(x) log

(
p(x)
q(x)

)
dx.

(4)
2.1.3 Relation Between Fisher Information and f -

divergence: For notational simplicity, let pθ and pη de-
note the probability distribution of a random variable X
parameterized by θ and η = θ+ δ, respectively. Here,
δ is a small perturbation around θ. This means pθ =
p(x|θ) and pη = p(x|θ + δ). The relation between the
Fisher information F(θ) and the f -divergence between
pθ and pθ+δ is given in a quadratic form as [20, 27]

D f (pθ||pη) ≈
1
2

δTF(θ)δ. (5)

The above relation can be obtained by applying the
Taylor expansion to the f -divergence. This relation
indicates that if D f

(
pθ∥pη

)
can be computed for at

least d(d + 1)/2 different perturbations δ, then the FIM
F(θ) can be obtained by solving (5). This is due to
the fact that F(θ) ∈ Rd×d is a symmetric matrix and
thus contains d(d + 1)/2 different elements. It should
be noted that the relation in (5) is for the FIM. One of
our contributions is to prove that the relation between
the B-FIM and the f -divergence follows an expression
that is similar to (5).

2.2 Problem Statement

Consider a random variable X whose pdf p(x|θ) is
unknown. The parameters θ can be either deterministic
or random. We assume the parameters are tunable
in the sense that they can be perturbed by a small
deviation δ. The problem is to estimate the FIM F(θ)
when θ is deterministic or the B-FIM B when θ is
random using the data samples of X.

The closest related work to ours is [20], where Berisha
and Hero exploited the relation in (5) to develop
a non-plug-in Fisher information estimator based on
the FR statistic. More specifically, the method in [20]
approximates D f (pθ||pη) using the minimal spanning
tree (MST) for M different perturbations of δ where
M ≥ d(d + 1)/2. Then, the FIM F(θ) is obtained by
solving (5) based on the M computed divergence val-
ues. However, the complexity of the MST construction
is O(N2), where N is the total number of data samples.
Our proposed approach employs neural networks to
approximate D f (pθ||pη) with a O(N) complexity. As
will be shown later, the proposed approach gives a
higher estimation accuracy compared to the method
in [20] and is also scalable to high dimensions.

3 Proposed FINE

3.1 Deterministic Parameters

Here, we consider deterministic parameters θ and
we want to estimate the FIM F(θ). FINE also exploits
the relation between the Fisher information and the f -
divergence in (5) but unlike the method in [20] which

computes the f -divergence by using the FR statistic and
the MST, the proposed FINE employs neural networks
to compute the f -divergence. As will be shown later,
the use of neural networks not only helps improve the
estimation accuracy but also significantly reduces the
computational complexity.

Our motivation for computing the f -divergence by
neural networks comes from a recently developed mu-
tual information neural estimation method in [21],
which is referred to as MINE. Specifically, the mutual
information between two random variables Y and Z is
given as

I(Y, Z) = H(Y)− H(Y | Z) (6)
= DKL(PYZ∥PYPZ) (7)

= sup
T:Ω→R

EPYZ [T]− log
(

EPY PZ [e
T ]
)

(8)

≥ sup
T∈F

EPYZ [T]− log
(

EPY PZ [e
T ]
)

(9)

where F is any class of functions T : Ω→ R satisfying
the integrability constraints of the Donsker-Varadhan
representation [21], and Ω is a compact domain that
the two distributions PYZ and PYPZ belong to. Here,
I(·) and H(·) denote the mutual information and the
entropy, respectively. Note that the equality in (8) is the
Donsker-Varadhan representation. Belghazi et al. utilize
a well-known property of neural networks stated as the
universal approximation theorem. The idea in [21] is to
treat T as a neural network and the mutual information
I(Y, Z) is estimated by using the observed data to train
T such that EPYZ [T] − log

(
EPY PZ [e

T ]
)

is maximized.
After training, the trained objective function value reads
an estimate of the mutual information. Note that the
MINE method can be applied to estimate a general f -
divergence [28]. In [21], T is referred to as a statistic
network because it is trained to estimate a statistic.

Our idea is to compute D f (pθ∥pη) in (5) by using
the observed data to train a neural network T such
that Epθ

[T] − log
(

Epη [e
T ]
)

is maximized. Since F(θ)
contains d(d + 1)/2 different elements, we need to
compute D f (pθ∥pη) for M different perturbations of δ
where M ≥ d(d+ 1)/2. Then we can obtain an estimate
of F(θ) by solving (5).

Let ηi = θ+ δi with i = 1, . . . , M and let X ∈ RN×K

and Xi ∈ RN×K denote the data sets observed from pθ

and pηi , respectively. Here, N and K are the number
of data samples and the size of each sample, respec-
tively. A neural network Ti is used to estimate the f -
divergence d(δi) = D f

(
pθ∥pηi

)
based on X and Xi.

Specifically, Ti takes a vector of size K as the input
and returns a scalar as the output. Thus, X and Xi
are the input data sets of Ti. Let z = Ti(X) ∈ RN

and zi = Ti(Xi) ∈ RN . Then Ti is trained to maximize
1Tz/N − log(1T exp{zi}/N), which is used as an esti-
mate of d(δi). For notational simplicity, we use exp{zi}
to indicate that exp{·} is applied to zi element-wise. An
illustration of the proposed FINE is given in Figure 1.

Once the f -divergences have been obtained, we need
to solve (5) for F(θ) under the constraint that F(θ) is
a symmetric positive semi-definite (PSD) matrix. We
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Figure 1. Illustration of the proposed FINE method.

vectorize F(θ) by including the distinct upper triangu-
lar values of F(θ) and convert (5) to a linear function
of this quantity. Let

f = [F11, . . . , Fdd, F12, . . . , F1d, F23, . . . , F2d, . . . , F(d−1)d]
T ,

where Fij is the element in the i-row and j-column of
F(θ), and let

ui = [δ2
i1, . . . , δ2

id, 2δi1δi2, . . . , 2δi1δid, . . . , 2δi(d−1)δid]
T ,

where i = 1, . . . , M, δij is the the j-element of δi.
Denote U = [u1, . . . , uM]T , then we have a linear system
2d = Uf where d = [d(δ1), . . . , d(δM)]T . Using the least
square (LS) estimator, we can find an estimate of f as

f̂LS = 2
(
UTU

)−1UTd. (10)

This LS estimator, however, does not ensure that the re-
sulting estimate is positive semi-definite. So we employ
a semi-definite program (SDP) as follows [20]:

minimize
f

∥2d−Uf∥2
2

subject to fk = f̂ LSk , k = 1, . . . , d
mat(f) = F(θ) ⪰ 0

(11)

where fk and f̂ LSk are the k-th element of f and f̂LS, re-
spectively. The mat(·) operator converts the vectorized
FIM f to a full matrix representation F(θ). To ensure
the symmetric PSD requirement, we only need to refine
the off-diagonal elements of F(θ), which explains the
constrains fk = f̂ LSk , k = 1, . . . , d.

3.2 Random Parameters
In many systems, the operating parameters θ are not

deterministic, but random. This leads to the study of
the B-FIM B. Let π(θ) be the distribution of θ, then

B = −EX,θ
[
Hθ

(
log p(x, θ)

)]
= −Eθ [Hθ (log p(θ))]−EθX [Hθ (log p(x|θ))]
= F(π) + Eθ [F(θ)] . (12)

As can be seen from (12) that the B-FIM B does not
depend on a particular value of θ and consists of two
terms. The first term is the information of the prior
distribution and the second term is the expected Fisher
information. Some closely-related studies about the
Bayesian Carmér-Rao bound (BCRB) were presented

in [29] and [30, Chapter 7]. To the best of our knowl-
edge, the relation between the f -divergence and the
Bayesian Fisher information has not been stated for-
mally in the literature. Here, we show that the relation
between the B-FIM and the f -divergence follows an
expression that is similar to the one in (5) by Theorem 1
below.

Theorem 1. Consider a distribution PXθ with the pdf
p(x, θ + δ) and another distribution QXθ with the pdf
p(x, θ), where θ ∈ Θ ⊂ R is a random parameter, and
δ ∈ R is a small perturbation. For any convex function
f satisfying f (1) = 0 and f ′′(1) = 1, the f -divergence
between PXθ and QXθ

D f (PXθ ||QXθ) =
∫∫

f
(

p(x, θ + δ)

p(x, θ)

)
p(x, θ)dxdθ (13)

can be approximated as follows:

D f (PXθ ||QXθ) ≈
1
2

δ2B (14)

where B is the Bayesian information and defined as

B =
∫∫ (

∂ log p(x, θ)

∂θ

)2

p(x, θ)dxdθ. (15)

Proof: Using the Taylor expansion about θ, we have

p(x, θ + δ) = p(x, θ) + p′(x, θ)δ + o(δ), (16)

and thus

D f (PXθ ||QXθ) =
∫∫

f
(

1 +
p′(x, θ)δ

p(x, θ)

)
p(x, θ)dxdθ.

(17)
Using the Taylor expansion of f about 1, we have

f (1 + ∆) = f (1) + f ′(1)∆ +
1
2

f ′′(1)∆2 + o(∆2) ≈ 1
2

∆2.
(18)

The approximation in (18) is obtained since f (1) = 0,
f ′(1) = 0, and f ′′(1) = 1. We can always have
f ′(1) = 0 because D fc(P∥Q) = D f (P∥Q) where fc(t) =
f (t) − c(t − 1), which means if f (t) does not satisfy
f ′(1) = 0, we can replace f (t) by fc(t) with c = f ′(1).
Applying (18) to (17), we obtain

D f (PXθ ||QXθ) ≈
δ2

2

∫∫ (
p′(x, θ)

p(x, θ)

)2

p(x, θ)dxdθ =
δ2

2
B

Although Theorem 1 is stated for one dimensional
parameters, for higher dimensional parameters θ, one
can use the same reasoning and obtain

D f (PXθ||QXθ) ≈
1
2

δTBδ. (19)

Hence, the relation between the f -divergence and the
Bayesian Fisher information follows an expression sim-
ilar to the case of deterministic parameters in (5).
Therefore, FINE can be directly applied to this Bayesian
framework. However, it should be noted that the data
samples in this Bayesian framework are generated from
the joint distributions of X and θ.
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4 Accelerated FINE

4.1 Complexity Analysis
As described in the previous section, the proposed

FINE approach has two stages: (i) f -divergence estima-
tion by neural networks for various perturbations; and
(ii) FIM estimation by solving (5) for deterministic θ or
B-FIM estimation by solving (19) for random θ.

The complexity of the first stage depends on the time
for training the neural networks, which is O(JWN) [31]
for each purterbation. Here, J, W, and N are the number
of epochs, the number of trainable parameters, and the
number of training samples, respectively. For reliable
estimation, N often needs to be large, and so JW is
relatively small compared to N, making the complexity
of FINE roughly O(N). Compared to the empirical esti-
mator proposed by Berisha and Hero[20], their method
needs to construct the MSTs of dense graphs whose
complexity is O(N2). We will show later that the run
time of FINE is significantly lower than the run time of
the estimator in [20].

In the second stage, FINE needs to implement
an LS estimator in (10) and solve an SDP problem
in (11). The complexity of the LS estimator in (10) is
O
(

max(d4M, d6)
)

because the size of the matrix U is
M× (d(d + 1)/2). Problem (11) is an SDP and so it can
be solved in a polynomial time. Note that the complex-
ity of the second stage of the method by Berisha and
Hero in [20] is similar to that of the proposed FINE
because they share the same second stage.

4.2 Accelerated FINE
The complexity analysis above shows that the pro-

posed FINE has a lower complexity compared to the
method in [20]. However, FINE can still be expensive
to implement when the parameter dimension d is large.
This is because a large value of d will also require large
N and M for reliable estimation. Here, we propose an
accelerated FINE which can be employed for scenar-
ios where d is large. The proposed accelerated FINE
does not need to implement the LS estimator in (10)
whose complexity is O(max(d4M, d6)), and only uses
M = d(d + 1)/2 perturbations.

The idea is to sequentially estimate the elements of
the B-FIM B. The strategy of the accelerated FINE is to
perturb the elements of θ one-by-one when estimating
the diagonal elements of B, and pair-by-pair when
estimating the off-diagonal elements of B. Specifically,
for estimating a diagonal element Bii, we will only
perturb the i-th element of θ. This means the elements
of the perturbation vector δ are all zeros, except the i-
th one, i.e., δℓ ̸= 0 if ℓ = i and δℓ = 0 if ℓ ̸= i. With
this perturbation, we can obtain an estimate of Bii as
follows:

B̂ii ≈
2d(δ)

δ2
i

. (20)

Note that d(δ) is still obtained by a neural network.
After estimating all the diagonal elements Bii of B,

we can now estimate the off-diagonal elements of B
as follows. For estimating an off-diagonal element Bij

Figure 2. Procedure of the accelerated FINE for B-FIM estimation.

with i ̸= j, we will only perturbs the i-th and the j-th
elements of θ, which means δℓ ̸= 0 if ℓ = i or ℓ = j,
otherwise δℓ = 0. With this pair perturbation, we can
obtain an estimate of Bij as follows:

B̂ij =
2d(δ)− δ2

i B̂ii − δ2
j B̂jj

2δiδj
. (21)

It should be noted that B is a symmetric matrix, and
thus, we only need to estimate the upper triangular
part of B, i.e., for off-diagonal elements, estimating Bij
with j > i is sufficient. An illustration for the procedure
of the accelerated FINE is given in Figure 2 where the
“Direct Evaluation” module utilizes (20) and (21).

Finally, to make sure that B̂ is PSD, we employ a SDP
as follows:

minimize
B

||B− B̂||2F
subject to B ⪰ 0

Bii = B̂ii, i ∈ 1, . . . , d.

(22)

It is worth noting that, when the size of the data set (N)
is large enough, it is often found that the estimated B-
FIM B̂ obtained from (20) and (21) already satisfies the
PSD requirement. In this case, we do not need to solve
the SDP in (22). It should also be noted that although
the above procedure is for estimating the B-FIM B, i.e.,
for the case random parameters, it can also be directly
applied to the case of deterministic parameters.

5 Numerical Results

Here we numerically validate and evaluate the per-
formance of FINE for both cases of deterministic and
random parameters. We use neural networks with hy-
perparameters as illustrated in Figure 4 where Win
denotes the width of input layer, L and W denote the
number of hidden layers and the width of those hidden
layers, respectively. The ReLU activation function is
used and the output of the network is a scalar.
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Figure 3. Estimation accuracy and computational complexity comparison for the case of deterministic θ.

Figure 4. Example of a statistics network.

5.1 Deterministic Parameters
Here, we provide test results for the case of determin-

istic parameters. Consider a K-dimensional Gaussian
distribution as N (θ, IK). The objective is to estimate
the FIM F at θ = 0. It should be noted that d = K
in this scenario. The FIM has a simple closed form as
Ftrue = I. Each element of δ is drawn from N (0, 0.05IK).
We use the same data size of N for all data sets X,
X1, . . . , XM. We set K = 4 and M = 5d(d + 1)/2. Here,
Win = K = 4 and we set W = 5Win and L = 1. The
proposed FINE is compared with the method proposed
by Berisha and Hero in [20]. Test results are given in
Figure 3. The normalized mean squared error (NMSE)
is defined as NMSE = ∥F̂ − Ftrue∥2

F/d2. It can be
seen that the proposed FINE outperforms the method
in [20] in terms of both accuracy and computational
complexity. The run time of the method by Berisha and
Hero scales quadratically with N whereas the run time
of the proposed FINE decreases because it is found
that the neural networks converged faster with larger
data sets.

5.2 Random Parameters
Here, we provide test results for the case of random

parameters. Consider the transmission of τ BPSK sym-
bols a = [a1, . . . , aτ ]T over an additive white Gaussian

noise (AWGN) channel affected by carrier phase offsets
θ = [θ1, . . . , θτ ]T , the received signal is given as

yt = atejθt + nt,

where nt is the additive white Gaussian noise and
distributed as N (0, σ2

n) and θ follows the Wiener phase-
offset evolution, i.e., θt = θt−1 + wt, where wt ∼
N (0, σ2

w). The receiver needs to estimate the carrier-
phase offsets θ. In [32], a closed-form BCRB was derived
for this scenario. In addition, the authors also proposed
an asymptotic bound, which is referred to as ABCRB.
We adopt the observation block length τ = 4 and
various values of σ2

w. In this scenario, d = τ and K = 2τ
since the received signal yt is in the complex domain.
In general, the input size for the case of random pa-
rameters is Win = d + K. Here, we use neural networks
with L = 1 and W = 5Win. Comparison results are
shown in Figure 5. It is observed that with a low
value of σ2

w, both the estimated BRCB (by FINE) and
ABCRB are close to the true BCRB. Figures 5(b) and 5(c)
show that our proposed FINE produces remarkable
improvements over the ABCRB when σ2

w is higher.
Thus, the results in Figure 5 verify the efficiency of the
proposed FINE in case of random parameters.

5.3 Scalability
In this section, we show the scalability of the pro-

posed accelerated FINE by considering high parameter
dimensions. As mentioned in Section 4.1, the high
complexities of FINE and the method in [20] make
them only suitable for small parameter dimensions.
Here, we set the parameter dimension d as well as
the data sample size N to large values for which
FINE and the method in [20] are too expensive to
implement. However, the proposed accelerated FINE
can still handle the cases of large d and N efficiently.
We try to estimate the FIM of the parameters of the
model described in Section 5.1 with d increasing up
to 120. We use neural networks with the size of L = 1
and W = 2Win. Numerical results presented in Figure 6
verify the scalability of the proposed accelerated FINE
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(a) σ2
w = 0.12

(b) σ2
w = 0.42

(c) σ2
w = 0.72

Figure 5. Validation of FINE for the case of random θ.

as d increases. It can also be seen that the accelerated
FINE can give reliable estimation results for large d as
long as the data sample size N is large enough.

5.4 Effect of the Neural Network Size
In this section, we examine the effect of the neural

network size on the estimation accuracy and propose a
method for choosing an appropriate network size that
gives the best estimation performance.

We consider the same number of units in all hidden
layers. The total number of trainable parameters (the
network size) is changed by varying the number of

Figure 6. Accelerated FINE for high parameter dimensions.

Figure 7. Effects of the neural network size with d = 40 and N =
10000.

hidden layers L and the number of units W in each
hidden layer. The total number of parameters in terms
of Win, L, and W is given as

#params = (L− 1)W2 + (Win + L + 1)W + 1.

Results in Figure 7 show that different network sizes
give different estimation results and increasing the
network size does not necessarily improve the perfor-
mance, which is due to the overfitting phenomenon.
This prompts the need for developing an algorithm
that can choose a proper network size to give the best
performance.

In Figure 8 and Figure 9, we examine the convergence
of the network training process versus the network size
and the training epoch. The normalized error is given as
|estimate − ground_truth|/ground_truth. It is observed
that a large network size can make the training process
diverge (Figure 8) and a small network size can make
the training converge but it does not converge to the
ground truth (Figure 9). In the following, we propose a
method for choosing an appropriate network size that
can give the optimal solution. The proposed algorithm
is based on an observation that there is some range of
the network size that produces good results.
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Figure 8. Estimation error versus #params and training epoch for the
test scenario in Section 5.1 with L = 1, W = 40, and N = 20000.

Figure 9. Estimation error versus #params and training epoch for the
test scenario in Section 5.2 with L = 1, W = 12, and N = 10000.

A description of the proposed method is given in
Algorithm 1. First, we generate samples from the origi-
nal distribution and a perturbed distribution. Then we
initialize an ascending array W of candidate values.
For each Wi in the array W , we train a corresponding
statistics network using with the data samples for a
large number of epochs to obtain an estimate of the
divergence, which is stored in an array. We define an
auxiliary function to compute "mean gradient", which is
defined as the mean of the absolute difference between
an estimate and its two neighbouring estimates, except
for the first and last estimates since there is only
one adjacent estimate. The W value that produces the
smallest mean gradient is chosen as the optimal width
of the hidden layer.

6 Conclusion

This paper has proposed FINE – a Fisher information
estimator based on neural networks. The proposed
FINE was shown to be able to provide accurate FIM
estimation with a low-computational complexity. We

Algorithm 1: Choosing neural network size.
1: function MeanGradients(data)
2: mean_grads← []
3: n = data.length()
4: grads.append(|data[0]− data[1]|)
5: for i in 1 : 1 : (n− 2) do
6: mean_grad = (|data[i]− data[i− 1]|+
7: |data[i]− data[i + 1]|) /2
8: mean_grads.append(mean_grad)
9: end for

10: mean_grads.append(|data[n− 1]− data[n− 2]|)
11: return mean_grads
12: end function

Initialization:
13: Q← Generate samples from original distribution
14: P← Generate samples from perturbed distribution
15: W = {W1, W2, . . . , WU}
16: estimates← []

Train different statistics networks:
17: for W in W do
18: estimate = Divergence_approximate(P, Q, W)
19: estimates.append(estimate)
20: end for

Evaluation:
21: mean_grads = MeanGradients(estimates)
22: imin = argmin

i
mean_grads[i]

23: return W [imin]

demonstrated that FINE is applicable for estimating
the FIM of both deterministic and random parameters.
We also introduced an accelerated FINE version whose
computational complexity is much lower than that of
the original FINE version and therefore applicable for
high-dimensional parameters. Finally, we presented an
algorithm for choosing a proper size of the neural
networks used in the two FINE versions.
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