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performance of secrecy, offered by multihop decode-and-forward relaying, is investigated and compared to its counterpart
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1 Introduction

Multihop communication has been shown to be an ef-
fective way to extend the coverage of a wireless network
as well as to combat the adverse effects of wireless fad-
ing channels without using more network resources [1].
The basic idea is that the communication from a source
node to a destination node in the network is allowed to
be relayed by the assistance of intermediate nodes [2],
[3].

A concept of perfect secrecy was introduced by Shan-
non in 1949 when dealing with secure communica-
tion [4]. This is the ability of a communication system to
be secure against cryptanalysis when an eavesdropper
has unlimited time and manpower available for the
analysis of intercepted cryptograms. Recently, relayed
transmission is particularly attractive in physical (PHY)
layer security, which exploits the physical characteris-
tics of wireless channels for secure transmission [5].
In particular, while direct transmission leads to zero
secrecy capacity in some network scenarios, it was
shown that by introducing one or more relays a positive
secrecy capacity can be achieved in such scenarios.

In [6], three cooperation strategies relay-
eavesdropper channels were proposed, including
noise-forwarding (NF), compress-and-forward (CF),
and amplify-and-forward (AF) and the corresponding
achievable performance bounds were provided. Secrecy
capacity optimization was studied for AF-based and
decode-and-forward (DF)-based cooperative networks

in the presence of one eavesdropper or more [7],
[8]. Under secrecy constraints, relay and jammer
selection in cooperative systems were dealt with
in [9] wherein jamming was shown to be an efficient
technique for networks with strong eavesdropper
links. Considering the environment where multiple
trusty relays are available, an efficient relay selection
scheme was proposed in [10], taking into account both
legitimate and eavesdropper channels in the relay
selection metric and, hence, resulting in a significant
system secrecy capacity. For two-way relay networks,
secure performance analysis in terms of symbol
error rate confirms that the eavesdropper has more
chance to eavesdrop the message when it is located
close to one of the transmitters [11]. Recently, relays
which are untrusted have been studied and it has
been shown that they could be used to help the
source and the destination to communicate despite
being subjected to the secrecy constraints [12]. By
assuming the correlation between the legitimate and
eavesdropper channels, a closed-form expression of the
asymptotic secrecy capacity has been derived and its
behaviors in various situations have been extensively
studied [13]. Non-cooperative secure beamforming
and cooperative secure beamforming, as two ways
to transmit confidential information of the source to
the destination via an untrusted relay, were proposed
in [14]. It was shown that the cooperative scheme
should only be deployed if the transmit power of the
relay is high, the number of relay antennas is large,
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and the distance between the source and the relay is
small as compared to that between the source and the
destination.

Above, most of the performance analysis of wireless
systems under PHY layer security has been concen-
trated on two-hop relaying. In this paper, we investi-
gate the information-theoretic security of multihop DF
relay networks for the first time. Three secure per-
formance measures, which are the non-zero secrecy
capacity probability, the secrecy outage probability and
the secrecy capacity, are analyzed over the most gen-
eralized channel model which includes independently
identically distributed (i.i.d.) and independently non-
identically distributed (i.n.d.) Rayleigh fading channels
as special cases. Closed-form expressions as well as
easy-to-evaluate asymptotic solutions for the above se-
cure performance measures are provided for an arbi-
trary number of hops. From the analysis, we can gain
important insights in the design of a relay network and
realize the impact of some key network parameters on
the behavior of the network. For example, we can deter-
mine the optimal number of hops so as to have the best
secrecy capacity or the optimal trusty relay positions
under given fixed positions of the source, destination
and eavesdropper. In particular, based on the tractable
form of the non-zero secrecy capacity probability, the
optimization problem of relay placement is solved.

In detailing the above contributions, the paper is
divided into the following sections. The system and
channel models are first described in Section 2. To
obtain the secure performance metrics, the cumulative
distribution function (CDF) and probability density
function (PDF) of the equivalent end-to-end secrecy
signal-to-noise ratio (SNR) are also established. Next,
in Section 3, the secure performance is analyzed in
terms of the probability of non-zero secrecy capacity,
the secrecy outage probability and the secrecy capacity.
Then, in Section 4, the optimization problem of trusty
relay positions is solved. In Section 5, the performance
analysis is verified by Monte-Carlo simulation, together
with a study of the system behaviors at high SNR
regime. Finally, conclusions are drawn in Section 6.

2 System Model

Consider a multihop DF network under security con-
straints as shown in Figure 1. The network consists of
one source denoted by T0 and one destination denoted
by TK, in the existence of an eavesdropper denoted
by E. Suppose that no direct link between the source
and the destination is available and the communication
is performed by the assistance of K − 1 trusty relays,
denoted by T1, . . ., and TK−1. In particular, each inter-
mediate relay fully decodes the received confidential
signal and then forwards the re-encoded signal to the
next legitimate node over a wireless fading channel,
which is referred to hereafter as a main channel. Mean-
while, at each hop, the eavesdropper also attempts to
decode the message over an eavesdropper channel. For
simplicity, we assume that the eavesdropper cannot

T0 TKT1 TK−1

E

hM,1 hM,K

hE,1 hE,2 hE,K

legitimate link
eavesdropper link

Figure 1. Multihop DF relay network under secrecy constraints.

do joint decoding. In practice, this assumption can be
realized by using randomized code-books at each hop
to confuse the eavesdropper [12]. We further assume
that a transmitter (source or relay) has full channel
state information (CSI) of both the corresponding main
and eavesdropper channels. It is a widely adopted
assumption in the literature for communication systems
under secrecy constraints (see for examples [9], [10]).

Denote by hM,k and hE,k the channel coefficients of the
main and eavesdropper links in hop k, respectively. Un-
der Rayleigh fading, the corresponding channel gains,
|hM,k|2 and |hE,k|2, are exponentially distributed with
distribution parameters λM,k and λE,k. As a result, the
instantaneous signal-to-noise ratios (SNRs) of the main
and eavesdropper link are respectively

γM,k =
Pk|hM,k|2
N0

, (1)

γE,k =
Pk|hE,k|2
N0

, (2)

where Pk denotes the average transmit power at hop k
and N0 is the variance of additive white Gaussian noise
(AWGN) at the receivers. By introducing the general
notation Z ∈ {M, E}, the PDF and CDF of γZ,k are
given by

fγZ,k (γ) =
1

γ̄Z,k
e
− γ

γ̄Z,k , (3)

FγZ,k (γ) = 1− e
− γ

γ̄Z,k , (4)

where γ̄Z,k = PkλZ,k.

3 Secure Performance Analysis

In this section, we derive exact and asymptotic closed-
form expressions of key secure performance measures
for the network scenario under consideration. We start
with the definition of the secrecy capacity at hop k,
which is given by [4]

Ck
∆
=

[
log2

(
1 + γM,k

1 + γE,k

)]+
, (5)

where [x]+ ∆
= max(x, 0). To facilitate the analysis, we

denote by

γk =
1 + γM,k

1 + γE,k
, (6)

the secrecy SNR of hop k and present the following
lemma.
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Lemma 1 Under Rayleigh fading, the CDF of γk is given
by

Fγk (γ) = 1− e
− γ−1

γ̄M,k
αk

γ + αk
, (7)

where αk = γ̄M,k/γ̄E,k.

Proof: The CDF of γk can be expressed as

Fγk (γ) = Pr
[

1 + γM,k

1 + γE,k
< γ

]
=

∞∫
0

FγM,k (γ(1 + γE,k)− 1) fγE,k (γE,k)dγE,k.

Plugging (3) and (4) into the above result yields

Fγk (γ) =

∞∫
0

[
1− e

−
γ(1+γE,k)−1

γM,k

]
1

γE,k
e
−

γE,k
γE,k dγE,k.

By making use of
∫ ∞

0 fγE,k (γ)dγ = 1 and with the help
of the integral expression

∫ ∞
0 e−pxdx = 1/p [15, Eq.

(3.310)], we can obtain (7).
For multihop DF relaying under security constraints,

the system is defined to be in outage whenever the
data transmission in any hop is either unsuccessfully
decoded or imperfectly secure. In addition, under the
assumption that the direct link between the source and
the destination is not available and considering the fact
that the secure outage decisions are taken on a per hop
basis, the secrecy SNR of the system can be expressed
as

γe2e = min
k

γk. (8)

It is worth mentioning that such a form is similar to that
of conventional multihop DF relay networks. However,
secrecy SNR is used here instead of instantaneous SNR.
It is due to the fact that in view of security the weakest
hop dominates the secrecy system performance.

We now derive the CDF of γe2e, which will be useful
later for the derivation of the performance metrics.
Assuming that all γk are independent of each other,
we have

Fγe2e(γ) = 1− Pr[γ1 > γ, . . . , γK > γ]

= 1−
K

∏
k=1

(1− Fγk (γ)). (9)

Inserting (7) into (9) gives

Fγe2e(γ) = 1− eχ(1−γ)
K

∏
k=1

αk
γ + αk

, (10)

where χ = ∑K
k=1 1/γ̄M,k.

3.1 Probability of Non-zero Secrecy Capacity
The probability of nonzero secrecy capacity repre-

sents the probability that Shannon capacity of the main
channel is greater than that of the eavesdropper chan-
nel. For multihop DF relay networks, it is given by

Pr[C > 0] = Pr
[

1
K

log2(γe2e) > 0
]

. (11)

In (11), the factor 1/K accounts for the fact that the
overall transmission is split into K phases. In addition,
since log2(γe2e) > 0 is equivalent to γe2e > 1, Eq. (11)
can be rewritten as

Pr[C > 0] = Pr[γe2e > 1]
= 1− Fγe2e(1)

=
K

∏
k=1

αk
αk + 1

. (12)

It is clearly recognized that the probability of nonzero
secrecy capacity is determined by the channel gain ra-
tios between the legitimate and eavesdropper channels
rather than the average channel powers. Such a fact will
be the motivating point to investigate the optimal relay
positions, which will be presented in detail in Section 4.

To gain further insights, we study here two limiting
cases: αk � 1 and αk � 1, corresponding to the cases
wherein the eavesdropper is located very far or very
closely to the trusty nodes, respectively. From (12), it is
straightforward to arrive at

Pr[C > 0]→


1, αk � 1,

K
∏

k=1
αk, αk � 1.

(13)

From (13), we can see that if the channel gain ra-
tios between the legitimate and eavesdropper channels
are large the probability of nonzero secrecy capacity
reaches to 100%. On the other hand, if these ratios
are relatively small, the probability of non-zero secrecy
capacity will depend not only on them but also on the
number of hops.

3.2 Secure Outage Probability
Having obtained the CDF of γe2e, we can now derive

the secrecy outage probability. According to [6], the
secure outage probability is defined as the probability
that information-theoretic security of the multihop re-
lay system is compromised. For a given secure target
rate R, and with C > 0, the secrecy outage probability
Pr[C < R] can be expressed as follows using the total
probability theorem:

Pr[C < R] =Pr[C < 0]Pr[C < R|C < 0]
+ Pr[C > 0]Pr[C < R|C > 0]. (14)

Using the positivity notion in the definition of the
secrecy capacity, we can see that Pr(C < R|C < 0) = 1.
Hence,

Pr(C < R) = Pr(C < 0) + Pr(0 < C < R)

= Fγe2e(2
KR)

= 1−
K

∏
k=1

e
− 2KR−1

γ̄M,k
αk

2KR + αk
. (15)

3.3 Secrecy Capacity
We now turn our attention to the system secrecy

capacity, which is defined as

C ∆
=

1
K

∞∫
1

log2(γ) fγe2e(γ)dγ. (16)
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To obtain C, we first need to derive fγe2e(γ), which is
related to Fγe2e(γ) by fγe2e(γ) =

d
dγ [Fγe2e(γ)]. By partial

fraction expansion, Fγe2e(γ) can be written as

Fγe2e(γ) = 1− eχ(1−γ)
N

∑
i=1

ri

∑
j=1

Aij

(γ + βi)
j , (17)

where β1, β2, . . . , βN denote N distinct elements in de-
creasing order of α1, . . . , αK, the numerators

Aij =
1

(ri − j)!
d(ri−j)

dγ(ri−j)

[
(γ + αi)

ri
K

∏
k=1

αk
γ + αk

]∣∣∣∣∣
γ=−αi

,

and
N
∑

i=1
ri = K. As a result of (17), the PDF of γe2e is

given in the following form:

fγe2e(γ) = eχ
N

∑
i=1

ri

∑
j=1

Aij

[
χe−χγ

(γ + βi)
j +

je−χγ

(γ + βi)
j+1

]
.

(18)

This form enables us to obtain a closed-form expression
of the secrecy capacity. In particular, inserting (18) into
(16), we have

C= eχ

K

N

∑
i=1

ri

∑
j=1

Aij

∞∫
1

χe−χγlog2γ

(γ+βi)
j dγ +

∞∫
1

je−χγlog2γ

(γ + βi)
j+1 dγ

 .

(19)

Direct solving (19) is a challenging problem since both
integrands do not have a closed-form expression; the
integrand for j = 1 in (19) does not converge. To
overcome this challenge, integration by parts can be
applied, as follows:

∞∫
1

je−χγlog2γ

(γ + βi)
j+1 dγ =−

e−χγlog2γ

(γ + βi)
j

∣∣∣∣∣
∞

1︸ ︷︷ ︸
J1

−
∞∫

1

χe−χγlog2γ

(γ + βi)
j dγ

+
1

log 2

∞∫
1

e−χγ

γ(γ + βi)
j dγ. (20)

Then, by using l’Hopital’s rule, J1 is shown to be

J1 = lim
γ→∞

log2γ

eχγ(γ + βi)
j − limγ→1

e−χγlog2γ

(γ + βi)
j︸ ︷︷ ︸

→0

= lim
γ→∞

1

ln 2
[
χeχγ(γ + βi)

j + jeχγ(γ + βi)
j−1
]

= 0.

Hence, by combining (19) and (20) with J1 = 0, C can
be written as

C = eχ

2

N

∑
i=1

ri

∑
j=1

Aij

ln 2

∞∫
1

e−χγ

γ(γ + βi)
j dγ

︸ ︷︷ ︸
J2

. (21)

To proceed further with J2, partial fraction expansion
can be applied again

J2 =
1

βi
j

∞∫
1

e−χγdγ

γ
−

j

∑
`=1

1

βi
j+1−`

∞∫
1

e−χγdγ

(γ + βi)
`

. (22)

With the help of the identity
∫ ∞

1
e−ax

x dx = −Ei(−a) [15,
Eq. (3.351.5)] and the result proved in Appendix A, a
closed-form expression for the system secrecy capacity
is finally obtained as shown in Equation (23) at the
top of the next page. This closed-form expression can
be simplifed for different types of channels. For i.i.d.
channels (α1 = · · · = αK = α), it is simplified to
expression (24) at the top of the next page, and for i.n.d.
channels (α1 6= · · · 6= αK), expression (25).

It is obvious that by using (23), (24), and (25), the
system secrecy capacity over Rayleigh fading channel
can be easily obtained in closed-form. Though the
system secrecy capacity can be evaluated at arbitrary
SNR values, it hardly offers any insights. Instead, taking
into account the fact that the secrecy capacity of a
single hop over a Gaussian channel is bounded by a
finite value when the SNR approaches to infinity, it
is more meaningful to study the asymptotic system
security behavior at high SNR regime over Rayleigh
fading channels. The asymptotic secrecy capacity at the
high SNR regime will be derived next.

Theorem 2 At high SNR regime, the system secrecy capac-
ity, C, reaches an upper limit of

1
K

K

∑
k=1

K

∏
`=1,` 6=k

α`
αk − α`

log2(1 + αk), (26)

for i.n.d. channels, or

log2(α + 1)
K

− 1
K log 2

K

∑
k=2

αk−1

(k− 1)(1 + α)k−1 , (27)

for i.i.d. channels, or

−
N

∑
i=1

Bi1log2 (1 + βi)

K
+

1
K log 2

N

∑
i=1

ri

∑
j=2

Bij

(j− 1)(γ + βi)
j−1 ,

(28)
for generalized channels.

Proof: We start the proof by writing the definition
of the system secrecy capacity over Rayleigh fading
channels

C = 1
K

E

{
min

k

(
log2

[
1 + γM,k

1 + γE,k

])}
, (29)

where E{.} denotes the expectation operator. Since
γM,k, γE,k � 1, we have 1+γM,k

1+γE,k
≈ γM,k

γE,k
, and hence

C → 1
K

E

{
log2

[
min

k

(
γM,1

γE,1

)]}
=

1
K

∞∫
1

log2(γ) fγ̃e2e(γ)dγ, (30)

where γ̃e2e = mink
γM,k
γE,k

.
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C = eχ

K

N

∑
i=1

ri

∑
j=1

Aij

log 2

[
Ei(−χ)

βi
j +

j

∑
`=1

1

βi
j+1−`

(
e−χ

`−1

∑
n=1

(n− 1)!(−χ)`−n−1

(`− 1)!(βi + 1)n − (−χ)`−1

(`− 1)!
eβiχEi[−(βi + 1)χ]

)]
(23)

C = eχ

K log 2

[
Ei(−χ) +

K

∑
`=1

α`−1

(
e−χ

`−1

∑
n=1

(n− 1)!(−χ)`−n−1

(`− 1)!(α + 1)n − (−χ)`−1

(`− 1)!
eαχEi[−(α + 1)χ]

)]
(24)

C = eχ ∏K
m=1 αm

K log 2

K

∑
k=1

∏K
`=1,` 6=k

1
α` − αk

[Ei(−χ)− eαkχEi(−χ[1 + αk])] . (25)

To compute (30), we first derive Fγ̃e2e(γ), which is
given by

Fγ̃e2e(γ) = 1− Pr
(

γM,1

γE,1
> γ, . . . ,

γM,K

γE,K
> γ

)
= 1−

K

∏
k=1

[
1− Pr

(
γM,k

γE,k
< γ

)]
= 1−

K

∏
k=1

αk
γ + αk

, (31)

where Pr
(

γM,k
γE,k

< γ
)

is of the form

Fγk (γ) =
γ

γ + αk
.

Then, by using integration by parts, (30) can be now
rewritten in terms of Fγ̃e2e(γ) as

C→ 1
K

log2(γ)Fγ̃e2e(γ)|
∞
γ=1−

1
log 2

∞∫
1

Fγ̃e2e(γ)

γ
dγ

. (32)

By inserting (31) and into (32) and carrying out some
manipulations, the following yields

C →
log2(γ)

K

(
1−

K

∏
k=1

αk
γ + αk

)∣∣∣∣∣
∞

γ=1

− 1
K log 2

∞∫
1

1
γ

(
1−

K

∏
k=1

αk
γ + αk

)
dγ. (33)

After canceling like terms in (33) and applying the
L’Hopistal rule, it is straightforward to obtain

C → 1
K log 2

∞∫
1

1
γ

K

∏
k=1

αk
γ + αk

dγ. (34)

From (34), three cases of channels will be now consid-
ered separately. For the i.n.d channels, that is, α1 6=
· · · 6= αK, C is re-written as

C → 1
K log 2

∞∫
1

[
1
γ
−

K

∑
k=1

∏K
`=1,` 6=k

α`
αk−α`

γ + αk

]
dγ. (35)

Knowing that ∑K
k=1 ∏K

`=1,` 6=k
α`

αk−α`
= 1, the closed-form

expression of (35) is then expressed as

C → 1
K log 2

K

∑
k=1

K

∏
`=1,` 6=k

α`
αk − α`

log(1 + αk), (36)

which is the limit of (26).
Next, for the i.i.d. channels, that is, α1 = · · · = αK =

α, (34) is simplified to

C → 1
K log 2

∞∫
1

1
γ

(
α

γ + α

)K
dγ. (37)

By means of partial fraction expansion, (37) reads

C→ 1
K log 2

∞∫
1

[
1
γ
− 1

γ+α
−

K

∑
k=2

αk−1

(γ + α)k

]
dγ. (38)

Using the identity [15, Eq. (2.111)], we have

C→ 1
K log 2

[
log(α+1)−

K

∑
k=2

αk−1

(k− 1)(1+α)k−1

]
, (39)

proving the limit of (27).
Finally, for the generalized channels, recall that

β1, β2, . . . , βN are N distinct elements in decreasing
order of α1, . . . , αK. Then, (34) is re-expressed according
to the residue theorem as

C → 1
K log 2

∞∫
1

[
1
γ
+

N

∑
i=1

ri

∑
j=2

Bij

(γ + βi)
j

]
dγ, (40)

where ∑N
i=1 ri = K and

Bij =
1

(ri − j)!
d(ri−j)

dγ(ri−j)

[
(γ + αi)

ri
K

∏
k=1

αk
γ + αk

]∣∣∣∣∣
γ=−αi

(41)

Similarly, taking the integral with respect to γ, we have

C → 1
K log 2

∞∫
1

[
1
γ
+

N

∑
i=1

Bi1
γ + βi

+
N

∑
i=1

ri

∑
j=2

Bij

(γ + βi)
j

]
dγ

(a)
= −

N

∑
i=1

Bi1log2 (1 + βi)

K

+
1

K log 2

N

∑
i=1

ri

∑
j=2

Bij

(j− 1)(γ + βi)
j−1 , (42)

where (a) follows from the fact that ∑N
i=1 Bi1 = −1. The

limit in (42) is that in (27); this completes the proof of
the theorem.



38 REV Journal on Electronics and Communications, Vol. 2, No. 1–2, January – June, 2012

4 Maximizing The Probability of

Non-zero Secrecy Capacity

In this section, the optimal positions of trusty relays,
which maximize the probability of non-zero secrecy
capacity, will be studied. It will later be shown that
the system secrecy capacity is then improved at no
extra network resource. For ease of analysis, the linear
network model is considered where the trusty relays are
assumed to be in sequence and located on a straight line
connecting the source and the destination, as shown
in 1. Without loss of generality, it is further assumed
that the source, the destination and the eavesdropper
are placed at coordinates (0, 0), (1, 0), and (xE, yE),
respectively. Such a model is well adopted in the liter-
ature in studies related to multihop networks because
it is mathematically tractable and, more importantly, it
can be straightforwardly extended to the more general
case of two dimension (2-D) networks.

The single slope distance-dependent path loss model
in [16] is used where the average channel gain between
any two nodes primarily depends on the corresponding
distance between them; that is, λZ,k = d−η

Z,k with Z ∈
{M, K}, where η is the path-loss exponent1 and dZ,k is
the physical distance of hop k. Based on that model, we
have

αk
αk + 1

=
d−η

M,k

d−η
M,k + d−η

E,k

. (43)

From (12) and (43), the optimization problem is given
by

maximize
K

∏
k=1

d−η
M,k

d−η
M,k + d−η

E,k

subject to
K

∑
k=1

dM,k = 1.

(44)

The constraint in (44) indicates that the overall distance
between the source (T0) and the destination (TK) is
normalized to one. A conventional approach adopted in
solving the above optimization problem is the Lagrange
method. But with the current form of (44) the challenge
is the high computational complexity when dealing
with the Lagrange conditions.

Since α1, . . . , αK are all positive numbers, by using
the arithmetic-geometric inequality [15, Eq. (11.116)],
we have

K

∏
k=1

αk
αk + 1

≤
(

1
K

K

∑
k=1

αk
αk + 1

)K

. (45)

The probability of non-zero secrecy capacity attains its
maximum if and only if

α1

α1 + 1
=

α2

α2 + 1
= · · · = αK

αK + 1
, (46)

which yields

α1 = α2 = · · · = αK, (47)

1The path-loss exponent, η, normally takes values from 2 to 6
depending the operating environments.

or equivalently

d∗E,1

d∗M,1
=

d∗E,2

d∗M,2
= · · · =

d∗E,K

d∗M,K
, (48)

where d∗M,k and d∗E,k denote the optimal distance of
main and eavesdropper link in hop k, respectively. In
addition, for a given coordination of the eavesdropper
(xE, yE), dE,k can be expressed in terms of dM,k via the
help of the Pythagorean theorem as

dE,k =

√(
∑k−1

`=1 dM,` − xE

)2
+ yE2. (49)

Combining (44), (48) and (49), a nonlinear system of
equations can be built

dM,1 + · · ·+ dM,k − 1 = 0√
(xE − dM,1)

2 + yE2

dM,2
−

√
x2

E + y2
E

dM,1
= 0

...√(
xE −∑K−1

`=1 dM,`

)2
+ yE2

dM,K
−

√
x2

E + y2
E

dM,1
= 0

(50)

where dE,1 =
√

x2
E + y2

E.
The roots of the above equation system, which are

d∗M,1, . . . , d∗M,K, will provide the optimal x-coordinates
for trusty relays. In general, solving (50) is not easy
and one has to resort to numerical methods. Here,
we adopt the well-known Newton method where the
optimal distance of hop k can be determined by means
of recursion [17]. It is noted that the solution to this
problem solely depends on the number of hops and
the coordinate of the eavesdropper, regardless the op-
erational environment (the value of pathloss exponent).

5 Numerical Results

This section presents MATLAB simulations to verify
the analytical results. In our plots, we adopt the net-
work model where all nodes are located on a two-
dimensional plane as in Section 4. Unless otherwise
stated, a uniform relay placement scheme is used, that
is, dM,k = 1/K for all k. Furthermore, the secure target
rate is chosen as R = 1.

First, the the effect of the number of hops on the
system performance is investigated. Figures 2, 3 and 4
respectively show the probability of non-zero secrecy
capacity, the secure outage probability and the secrecy
capacity versus average SNRs of legitimate links, while
the average SNR of eavesdropper links is fixed at 5 dB
(γE,k = 5 dB for all k). As the figures reveal, the system
performance in terms of the probability of non-zero
secrecy capacity improve as K increases. In particular,
the proposed scheme shows its advantage in terms
of secrecy capacity gain over the direct transmission
scheme at low SNRs, γ̄M,k < 10 dB, which can be
explained partly by the increase of path loss gain.
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Figure 2. Probability of non-zero secrecy capacity versus K,
(xE, yE) = (0.5, 0.5), η = 3, γE,k = 5 dB for all k.
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Figure 3. Secure Outage Probability versus K, (xE, yE) = (0.5, 0.5),
η = 3, γE,k = 5 dB for all k.

However, increasing K does not always return a per-
formance improvement for secure outage probability.
For examples, the networks with K = 3 and K = 5
provide the best and the worst secure outage probabil-
ity, respectively. Such an observation suggests that for a
given fixed R, there exists an optimal number of hops,
which will provide the best secure performance.

Next, the behaviors of the system at high SNR is
shown in Figure 5. Clearly, the system secrecy capacity
at high SNR regime approaches an upper limit, which
is determined by the number of hops and the average
SNR ratios between the legitimate link and the eaves-
dropper link. It is worth noting that, in the low SNR
regime, increasing the number of hops offers better
performance but with diminishing returns. However,
in the high SNR regime, a direct transmission is more
favorable since it provides the best secrecy capacity.
Such a phenomenon can be explained by the fact that
communicating over short distance in the low SNR
regime is equivalent to increasing the effective SNRs.

The effect of the position of the eavesdropper on the
system secrecy capacity is studied. For illustration, a
dual-hop relay network is considered. Figure 6 shows
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Figure 4. Secrecy capacity versus K, (xE, yE) = (0.5, 0.5), η = 3,
γE,k = 5 dB for all k.
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Figure 5. Effect of number of hops on the secrecy capacity, (xE, yE) =
(0.5, 0.5), η = 4.

three different positions of the eavesdropper with co-
ordinates at (0.1,0.3), (0.5, 0.3) and (0.9,0.3), denoted
as case A, case B and case C, correspondingly. It is
straightforward to see that the eavesdropper is located
closely to the source, the relay and the destination
in case A, case B and case C, respectively. Among
them, case C outperforms case B, which, in turns,
outperforms case A. It can also be seen that the system
secrecy capacity will improve if the eavesdropper is
located farther away from all transmitters.

Figures 8 and 9 show the effect of path loss exponent
on the probability of non-zero secrecy capacity and
the secrecy capacity, respectively. It can be seen that
using more hops provides a better probability of non-
zero secrecy capacity, which is also consistent with the
results reported above. However, with resepct to the
secrecy capacity, there exists the optimal number of
hops, which seems to be a complicated function of K.
For example, the optimal number of hops for η = 2, 3
and 4 is 3, 2, and 2, respectively.

Up to this point, the optimal relay positions have
not been considered. Figure 7 shows the advantage of
multihop relay networks in conjunction with optimal
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Figure 6. Effect of the eavesdropper position, η = 3, K = 2.
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Figure 7. Comparison of relay replacement schemes, (xE, yE) =
(0.25, 0.25), η = 4.

relay replacement. For comparison purposes, the re-
sults provided by the uniform and randomized relay
placement schemes are illustrated. We can see that in
terms of secrecy capacity, the optimal relay placement
provides the best performance as compared to the
others. Furthermore, such a gain is more pronounced
when the number of hops increases.

6 Conclusions

In this work, the information-theoretic security of mul-
tihop DF relay networks has been considered. New ex-
act closed-form expressions for the probability of non-
zero secrecy capacity, the secure outage probability and
the secrecy capacity, assuming Rayleigh fading chan-
nels. The asymptotic analysis for the secrecy capacity at
the high SNR regime was also provided. The numerical
results have illustrated that multihop DF relay networks
can provide better performance in comparison with
direct transmission under the secrecy constraints. An
optimal solution to the problem of trusty relay re-
placement was also investigated and it was shown that
the system secrecy performance significantly improved
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Figure 8. Effect of path loss exponent on the probability of non-zero
secrecy capacity, (xE, yE) = (0.25, 0.25).
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Figure 9. Effect of pathloss exponent on the secrecy capacity,
(xE, yE) = (0.25, 0.25).

without any network resource requirement. Finally, it
was shown that the uniform relay replacement scheme
gives an acceptable performance as compared to the
randomized one.

Appendix

The purpose of this appendix is to calculate

I` =
∞∫

1

e−χγdγ

(γ + βi)
`

. (51)

For ` integer with ` ≥ 2, using integral by parts, we
obtain

I` = −
e−χγ

(`− 1)(γ + βi)
`−1

∣∣∣∣∣
∞

γ=1

− χ

`− 1

∞∫
1

χe−χγ

(γ + βi)
`−1 dγ

︸ ︷︷ ︸
I`−1

=
e−χ

(`− 1)(βi + 1)`−1 −
χ

`− 1
I`−1. (52)
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It can be clearly seen that (52) is expressed in a recursive
form. Then, after `− 2 times of repeated integration by
parts and using the same procedure as for (52), we have

∞∫
1

e−χγdγ

(γ + βi)
`
=e−χ

`−1

∑
n=1

(n− 1)!(−χ)`−n−1

(`− 1)!(βi + 1)n

+
(−χ)`−1

(`− 1)!
eβiχEi[−(βi + 1)χ], (53)

where I1 = eχβ1Ei[−χ(βi + 1)] [15, Eq. (3.352.2)].
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