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Abstract- In this paper, we investigate an intelligent reflecting surface (IRS) assisted simultaneous wireless information
and power transfer (SWIPT) system in which users equipped with multiple antennas exploit power-splitting (PS)
strategies for simultaneously information decoding (ID) and energy harvesting (EH). Different from the majority of previous
studies which focused on single objective optimization problems (SOOPs) and assumed the linearity of EH models, in this
paper, we aim at studying the multi-objective optimization problem (MOOP) of the sum rate (SR) and the total harvested
energy (HE) subject to the maximum transmit power (TP) constraint, the user quality of service (QoS), and HE requirements
at each user with taking a practical non-linear EH (NLEH) model into consideration. To investigate insightful tradeoffs
between the achievable SR and total HE, we adopt the modified weighted Tchebycheff method to transform the MOOP
into a SOOP. However, solving the SOOPs and modified SOOP is mathematically difficult due to the non-convexity of the
object functions and the constraints of the coupled variables of the base station (BS) transmit precoding matrices (TPMs),
the user PS ratios (PSRs), and the IRS phase shift matrix (PSM). To address these challenges, an alternating optimiza-
tion (AO) framework is used to decompose the formulated design problem into sub-problems. In addition, we apply the
majorization-minimization (MM) approach to transform the sub-problems into convex optimization ones. Finally, numerical
simulation results are conducted to verify the tradeoffs between the SR and the total amount of HE. The numerical results also
indicate that the considered system using the IRS with optimal phase shifts provides considerable performance improvement
in terms of the achievable SR and HE as compared to the counterparts without using the IRS or with the IRS of fixed
phase shifts.

Keywords— Intelligent reflecting surfaces (IRS), multi-user MIMO, simultaneously wireless information and power transfer
(SWIPT), multi-objective optimization problem (MOOP).

1 INTRODUCTION from the IRS can be effectively combined with other
signal links, either constructively or destructively, based
on specific requirements of WCSs [5, 6]. Consequently,
propagation environments can be smartly controlled
to establish favourable channels. In addition, IRSs can
easily integrate into existing wireless networks due to

their flexibility and low implementation cost [5, 7].

The significant growth in applications and services
within wireless communications has been a key driv-
ing force for the development of advanced technolo-
gies. Massive multiple-input multiple-output (MIMO)
technologies which are recognized as one of the effec-
tive solutions to increase spectral efficiency (SE) have

been studied and deployed in wireless communication
systems (WCSs) [1]. However, the exploitation of the
large number of antennas leads energy consumption
issues. Apart from the SE, the design of WCSs recently
has paid more attention to energy efficiency (EE) issues
to move towards next generation of green WCSs. With
the rapid development of advanced metasurfaces and
fabrication technologies, intelligent reflecting surfaces
(IRSs) have arisen as a promising approach to boost the
WCS performance [2]. An IRS is composed of a vast
number of programable elements which are capable
of reflecting incident radio-frequency (RF) waves and
changing their phase shifts [3, 4]. Through precise
adjustment of the phase shifts, the signals reflected

Apart from the goals of the SE and EE, WCS designs
aim at prolonging the lifetime of wireless devices by
harvesting energy from surrounding environment. To
this end, recent studies have focused on simultane-
ous wireless information and power transfer (SWIPT)
techniques [8-10]. In general, SWIPT has two basic
schemes, namely a separated scheme and a co-located
scheme [11, 12]. In the separated scheme, there are
two groups of users, namely energy harvesting (EH)
users and information decoding (ID) users, in which
each receiver has a distinct function of either EH or ID.
Conversely, in the co-located scheme, each device con-
ducts both EH and ID functions through either time
switching or power splitting (PS) methods.
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1.1 Related Works

The studies on deploying IRSs in SWIPT systems
for various scenarios have been reported in [5, 13, 14].
In [5], the authors studied an IRS-assisted SWIPT multi-
user MIMO system in which the transmit precoding
matrices (TPMs) at the base station (BS) and phase
shift matrix (PSM) of the IRS are jointly optimized to
maximize the weighted sum rate (SR) of the informa-
tion receivers. To address the challenges caused by the
non-convex characteristics of the optimization problem
(OP), the authors in [5] employed the block coordinate
descent algorithm for decoupling the original OP into
multiple sub-problems and alternatively optimized the
TPMs and the PSM. The authors in [13] proposed a
penalty-based algorithm to minimize the total transmit
power (TP) under the quality-of-service (QoS) con-
straints and the EH constraints for all users. In [14],
the max-min EE of the IRS-aided SWIPT system was in-
vestigated, where the authors proposed two algorithms,
namely penalty-based and inner approximation-based
strategies, to handle the non-convexity of the OP. Sim-
ilarly, the authors in [15] studied the harvested energy
(HE) maximization in IRS-assisted SWIPT multi-user
MIMO systems. Notice that all of the aforementioned
works focus on optimizing a sole system performance
metric referred to as a single objective OP (SOOP),
while only a few papers considered simultaneous OPs
of conflicting objectives, namely a multi-objective OP
(MOOP) [16-18].

1.2 Contributions

Motivated by the aforementioned discussion, the
present paper delves into an IRS-aided MU-MIMO
SWIPT system with the non-linear EH (NLEH) model.
The co-located SWIPT scheme is deployed, in which
the users adopt the PS method to conduct both ID
and EH simultaneously. To investigate the insights on
tradeoffs between the achievable SR and sum HE (SHE),
we formulate the design problem as a MOOP of the
SR maximization (SRM) and sum HE maximization
(SHEM). It is important to highlight that MOOP design
is a necessary research trend in next generation wireless
systems in which various conflicting performance met-
rics are taken into consideration [19, 20]. To emphasize
the distinctiveness of our research, we compare it with
the other related works in Table I. The contributions of
our work can be described as follows:

o We formulate the design problems of the BS TPMs,

user PS ratios (PSRs), and IRS PSM to maximize the
SR and sum HE under the constraints of maximum
TP, the minimum user rate requirement, the mini-
mum user HE requirement and IRS unit-modulus.
Both SOOPs and MOOP are formulated as non-
convex non-linear constrained OPs whose optimal
solutions cannot be directly obtained.

« To investigate Pareto optimal solutions, we trans-
form the MOOP into the SOOP by using the mod-
ified weighted Tchebycheff (MWT) method [21].
The resultant SOOPs and MOOP under consid-
eration are highly complicated to solve since the

coupling of the design variables, the non-convexity
of the objective functions (OFs) and constraints.
To tackle these issues, an alternating optimization
(AO) framework is utilized to alternately optimize
the BS TPMs, the user PSRs, and the IRS PSM. To
deal with the non-convexity property of each sub-
problem, we exploit the majorization-minimization
(MM) method to determine lower bound concave
functions for the NLEH and user rate functions
and establish the convex inner counterparts of the
feasible sets to recast the OPs as convex forms.

o Simulations are provided to illustrate the benefits
of employing optimal IRS for enhancing SR and
HE performance. In addition, the simulation re-
sults provide the insightful performance tradeoffs
between the SR and HE performance in the con-
sidered system.

The structure of this paper is outlined as follows.
Section 2 describes the signal and system model. In
Section 3, the design OPs for SOOPs composed of the
SRM and SHEM are formulated. Then, the MOOP of
the SRM and SHEM is devised. Section 4 develops
the iterative algorithms to solve the considered SOOPs
and MOOP. Finally, Section 5 provides the simulation
results while Section 6 offers the concluding remarks.

Notations: The trace, determinant, Hermitian trans-
pose, and transpose operations of a matrix X are ex-
pressed as Tr(X), |X|, X!, and XT respectively. The
identity matrix of dimension n x n is represented by I,
while a diagonal matrix with the main diagonal entries
of ay, ay, ..., ap is written as diag (a1,4z,- - ,ap). The
Hadamard product of two matrices X and Y is repre-
sented by X ® Y. Expression X > 0 stands for a positive
semi-definite matrix X. An expectation operation is
expressed by E(-). x ~ CA (a,R) stands for a complex
Gaussian random vector x with mean a and covariance
matrix R. With function f(X,Y), it is referred to as f(X)
when Y is fixed.

2 SysTEM MODEL

The considered IRS-aided MU-MIMO SWIPT system
is sketched in Figure 1 in which a BS having N; an-
tennas communicates with L multiple antenna users
(UEs) in downlinks with the assistance of an IRS of
N reflecting elements. User ¢ denoted by UE, with

(o)) Lo
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UE, AL
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Power splitting at UE,

Figure 1. A multi-user MIMO SWIPT system with the assistance of
the IRS.
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Table I
CoMPARISON OF THIS WORK WITH THE RELATED WORKS
[5] | [14] | [15] | [16] | [17] | [18] | This work
MIMO v X e X X X v
SOOP v v v v v v v
MOOQOP X X X v v v v
Co-located SWIPT X v v X X X v
NLEH model X v e X X X v
Minimum HE constraints v v v X X v v
Minimum data rate constraints | X v v X X v v

¢ e £ ={1---,L} is equipped with N, antennas.
By applying the TPM V, € CNi*d for the signal
of UEy, the BS transmits the superimposed signal as
s = Z,%Zl Vs, where s, € C%*! is d, data streams
intended for UE,. It can be generally assumed that
E(s;si) = 1, E(s;sf) = 0 for ¢ # i. We denote
the channel matrix from the BS to the IRS, from the
IRS to UE,, and from the BS to UE; by G € CN*N,
H,, € CV*N and H,, € CNr Nt respectively. Note
that the channel state information (CSI) acquisition in
IRS-aided WCSs is challenging due to the presence
of a large number of passive reflecting elements at
the IRS. The various channel estimation schemes for
IRS-related channels were introduced in [22, 23]. To
explore the achievable system performance, we con-
sider the scenario where the BS has access to perfect
CSI. Such assumption is widely adopted in related
studies [5, 13, 14]. The interactions of the IRS elements
with the impinging signals are represented by matrix
0 diag (7101, 7202, - -+ , ynON) where 0, e/
for n € N = {1,---,N}. For reflecting element
n, vn € [0,1] and ¢, € (0,27] respectively represent its
reflection amplitude and phase shift. For simplicity, we
assume that , = 1, ¥n [3]. Define H, £ H,,+H,,0G
as the effective channel from the BS to UE,. Then, the
received signal at UE; can be written as

L
ye=H, Vs, + 2 H,V;s;+n;, tel, (1)
=Lkt

where n;, ~ CN (O, 03[ INV) is additive white Gaussian
noise (AWGN) at UE,.

To facilitate EH, the PS circuits at the users are
deployed to partition the received signals into two
streams: one dedicated to ID and the other intended
for EH. Denoting a PSR p; as the portion of the signal
used for ID at UEy, its signal for ID is given by

L
Yipe = VorHeVesg+y/or ), Hy Vs,
=Lt

@)

where n., ~ CN (0, (7(:2[ INF) is additional noise caused

by the ID circuits at UE, [24]. Accordingly, the achiev-
able data rate for UE, is

+peny, +ne, LEL,

C(V,p,0) = log, [In, + H, V, VI HI T, )

where we have defined V = {Vy,V,,...,V.}, 0 =
[91192/---19N]T/ Y [p]rer-“/pL]Tr and J[
Y120 He Vi VITH] +07 Ty, +0, 02 Ty,. From the re-
ceived signal in (1), the remaining signal stream for EH
at UE, is given by

L
yeue =vV1—pe Y HiVisi+y/1—pin, L€ L. (4)
i=1

Note that in practical scenarios, the noise power is
significantly lower compared to the RF power, and
therefore, it is ignored for EH. Then, the input en-
ergy of the EH circuits at the UE, is expressed
as &/(V,0,0) = (1—p))Tr (CE H, Vi VITHT). As
shown in recent works [25, 26], the practical EH circuits
exhibit a non-linear RF energy conversion. Specifically,
the practical experiments show that for the lower input
power the output power of the EH circuits increases but
for the high input power, the output power becomes
saturated at the maximum possible power. Thus, the
assumption of linear EH models can lead to the system
performance loss due to a mismatch between the prac-
tical EH models with the ideal linear EH ones. Accord-
ingly, it is important to take practical NLEH models into
consideration while designing the optimal transmission
strategies. With adopting the NLEH model [25], the
total HE at UE, can be obtained by

-1
e (V,p,0) =Ty (14+ e~ @VeO=0)) 1y, (5)

Here, Y, 1/ (1 +e“fbf), Iy, P;/ (1—Yy) where
constants a4y and b, are determined by the charac-
teristics of electronic components in the EH circuits.
Additionally, P, represents the maximum harvested
power at UE; when the EH circuit attains saturation.

3 MuULTI-OBJECTIVE OPTIMIZATION
ForMuULATION

This paper aims to simultaneously maximize the SR
and SHE at the users by optimally designing the BS
TPMs, the IRS PSM, and the PSRs under the practical
constraints imposed on the TP, the minimum data rate
and HE. However, the objectives of the SRM and SHEM
may conflict with each other [19]. Therefore, to study
the insightful tradeoff between them, we formulate the
design problem as a MOOP. To this end, we firstly
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introduce two SOOPs, then we formulate a MOOP from
those SOOPs.

3.1 SOOP for SRM Problem

The achievable bit rate of the system is key perfor-
mance metric in the design and evaluation of WCSs.
Thus, the first SOOP is to maximize the achievable SR
of the system. The SRM problem can be represented as
a minimization one

L

SOOP 1: m’}ré 21 (V,p,0) 2 — g ¢(V,p,0) (6a)
sit. Z Tr (Vg V{f) < Poax, (6b)

(=1
0 (V,p,0)>1, terL, (6¢)
N (V,p,0)>e)", teL, (6d)
0. =1, ne N, (6e)
0<p, <1, LeL, (6f)
req

where Pmax is the maximum BS TP budget while T,
and eg are the minimum user rate requirement and
the minimum HE requirement at UE,, respectively.
Constraint (6b) restricts the maximum TP at the BS.
Constraint (6¢c) guarantees the QoS in terms of the
achievable user rate for each user while constraint (6d)
guarantees the minimum amount of HE for each users.
Constraint (6e) imposes the unit-modulus on the IRS
reflective elements.

3.2 SOOP for SHEM Problem

Apart from the performance metric of the SR, in
SWIPT systems, maximizing the amount of HE is
another desirable objective. Thus, the second SOOP
aiming at the SHEM is formulated as

M (V,p,0) = Zé‘ (V,p,0) (7a)

st (6b) — (65). (7b)

SOOQOP 2 : min
V,p,0

3.3 MOOP for the SRM and SHEM

Note that the objectives of the SRM in SOOP 1 and
the SHEM in SOOP 2 are mutually conflicting. One
solution to maximize the SR performance can result
in the degradation in the SHE performance. Thus,
the MOOP which aims at simultaneously optimizing
both performance metrics is practically necessary. The
MOQP is expressed as

MOOP : mm 23(V,p,0) (8a)
Vp,8
s.t.  (6b) — (6f). (8b)

where 3 (V,p,0) = [Q1 (V,p,0),0> (V,p,0)] and the
OFs in problems SOOP 1 and SOOP 2 are the elements
of the OF vector in (8).

Due to the coupled variables of the TPMs, PSRs,
and PSM, OFs in problems (6), (7), and (8) are highly
non-linear and non-convex. Regarding the constraints,
it is worth noting that the minimum user data rate

constraints in (6¢c) are non-convex with respect to (w.r.t.)
the design variables and the EH constraints in (6d) are
more complicated and non-convex due to the NLEH
models. Furthermore, the unit-modulus constraints on
IRS reflective elements in (6e) pose a non-convex na-
ture, which makes the OPs intractable to solve.

4 ProOPOSED METHOD FOR SRM anD SHEM

In this section, we employ the AO approach to decom-
pose each original problem, namely SOOP 1, SOOP 2,
and MOQOP, into amenable sub-problems. Initially, we
obtain the optimal TPMs and PSRs with fixed phase
shifts. Subsequently, with fixed TPMs and PSRs, we de-
termine the optimal phase shifts. In each sub-problem,
in order to address non-convex OFs and non-convex
constraints, we aim to identify suitable surrogate func-
tions. This is achieved by applying the MM method to
reformulate the design problems into convex optimiza-
tion ones.

4.1 Proposed Method for SOOP of SRM

4.1.1 Joint Design of TPMs and PSRs: In this subsec-
tion, we fix 6 while the BS TPMs and the user PSRs are
optimally designed. Then, problem (6) is rewritten as

min - 01(V,p) Z e (V,p) (9a)

st. O (V p) > r“”? z €L, (9b)
NE(V,p) =7, terL, (9¢c)
(6b), (6f). (9d)

We aim at finding the concave lower bound
of non-convex (;(V,p) in (9a) and (9b). To
this end, at iteration m, we define ng) =
L

Y. H, V" VIHHT 02 1y 10" 02 1y,
i=1,i0

Cgy = ﬁ Jim)'il H, Vim), CBy =
log, [Ty, +H, V" v w7 -
ﬁTr (V( MR V), Dy -
ey 07 =07+ BV VT o

Then the following inequality is hold [27]
e (V,p) >0 (V,p) = cpy
2R {Tr (c{;z H, w) }
~Tr (i, (B veviEE +,)). (o)

To deal with the non-convex constraint in (9¢c), we firstly
transform it into an equivalent form as follows

i=1

L i
PV 2T (LHV VRS ) > S

f (1—pr)
where & £ b, — al[ln (ef”Jrfrm —1). Since 1y (V)

in (11) is convex w.r.t. V and, thus, its lower bound
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is glven by using its first-order Taylor expansion
at V(" as [27]

P (V) > (V) 228 {Tr (i H, me) \%5 H?) }
=

Substituting (12) into (11) yields the inner convex

a8 ) . (12)

approximation of (9¢c) as

. G
V) > ,lel. (13)
PV =
From the above discussion, problem (9) can be refor-
mulated as
min O (V,p) Z e (V,p) (14a)
st. G (V,p) > r;”, e €L, (14b)

(6b), (61), (13). (14c¢)

Now, problem (14) is jointly convex w.r.t. {V,p} and,
thus, it can be efficiently solved by convex program
solvers, e.g., CVX packages [28].

4.1.2 Design of the Phase Shifts: Next, we focus on
optimizing 6 with given {V, p}. Accordingly, problem
(6) is rewritten as

L
min 3 (6) = - Z Ce(0) (15a)
st. g, () > r;“’, W e, (15b)
b (e) > e, Ve eL, (15¢)
(6e). (15d)

Similar to (10), we derive the lower bound of {, (0) as

follows

Ce(0) > (0) =cpy+2R {Tr (CII& Hy Ve) }
—Tr <i DY, H V; V! H?)
i=1
—Tr (D, (o +p;1 5)) . (16)
where cp ; = log, ’IN, + H( )V VH Jf ‘

- +Z)Tr (Vi
12 R )VK/ Drye

= 07" (Jzz) +H v, v ED ) =0, Jéz)

_ YF o HY ViVERY i +02 Iy, +p; 02 Iy,

HY £H,,+H,0%G.

£Z> Vz)/ Crye

By substituting H, = Hy,+H,,0G into (16)
and using the matrix identity in [29, 30] that
L H ) — vL gH T
vk, Tr(efw,ez) = v}, 6" (W, ©zl)6, where
W, = H, DI H,,, and Z; = GV; VF G", the lower

bound {; (8) in (16) can be expressed as

=y + 2R {Tr (Cllgé (Hb,g + Hr,f (¢ G) Vé) }

L
—Tr (Z H,!, DY, H, , V; Vﬁ)

i=1

e (0)

L
—Tr (Z Hfé ng{g H,,0GYV, VF)
i=1

L
(ZGHGHH ' DR/ Hy V; V] )
i=1

L
-y o (w,ozl)o
i=1
— e (DR, (o2 +p;102)). (17)

Similar to (11), constraint (15¢) can be rewritten w.r.t. 0
as follows

L _
P (0) 2 Tr (ZHgViVﬁHé{) > ﬂéfpz). (18)

i=1
Similar to (12), the lower bound of ¢, (0) can be

given by
L
2R {Tr <2 H v, vl Hf) }
i=1

L
Tr (Zl H v, v H ) .9

~—

P (0) >y (0

To address non-convex constraint (6e), a relaxation
and penalty approaches are employed. Constraint (6e)
can be relaxed as follows [31, 32]

0, <14v,,VneN, (20a)
00> > 1 — pn,Vn e N, (20b)

with auxiliary variables y, > 0 and v, > 0,Vn € N. To
handle constraint (20b), we use its inner convex set at

0\?) as [27, 33]
2R {9,9'*9,1} -

By denoting # = [uy,---,un]", v = [, ,wn]"
and applying the penalty method, problem (15) can be
recast as

N N
min O (0) £ — ZQ +,3<Zﬂn+zl/n>
n=1 n=1

0|’

>1—py,VnenN. (21)

ouv
(22a)
st. {(0) =17, teL, (22b)
By (6) > =) Efpf), teL, (22¢)
fy >0,v, >0,n €N, (22d)
(20a), (21), (22¢)

where B is a penalty parameter. The penalty is involved
in the OF in (22a) such that yu, and v, approach to
zero and, then, |6,|,Vn € N reaches to 1. Note that
the OP (22) is convex and its optimal solution can be
obtained by standard convex solvers [28].



P. V. Quyet & H. H. Kha: Multi-Objective Optimization for IRS-Aided Multi-user MIMO SWIPT Systems 59

As a result, the iterative procedure for maximizing
the SR of the users by alternatively updating the TPMs,
PSRs, and PSM is presented in Algorithm 1 with the
maximum number of iterations 0,;,x and error tolerance
e. Note that to facilitate the convergence of the iterative
algorithm, the penalty parameter is updated at each
iteration and is confined to a maximum value By.

Algorithm 1 An AO algorithm for the SRM
1: Inputs: Set € and 0y

2. Initialization: feasible V(0 = Vio), 00 — 6&0)
p(o) = pgo), and set r = 0.
3: repeat

4 Setm=0, vim) — VS:), p( m — pg),

5:  repeat

6: For given 0 = N(-)Sf), solve problem (14) to obtain
the solutions V and p;

Update m < m+1, V" =
|(~2] (V<m),p(m))*ﬂ] (V(m -1) )
(’“21 (V(m 71)’p(m 71))

vp< ) = b

m]|
<egorm >

N

8  until
Omax, .

90 Obtain V=YV, p=0p;

10: Set >0, Bax >0,6>1,2z=0, 0 =0,

11:  repeat

12: For given V, p, solve problem (22) to obtain 6;

13: Upd&}te Z 4 %+1 ,B min (5,3 ,Bmax) ( ) = =0;
14:  until [ (@) (0"
: Qq(07Y)
15:  Obtain 0 = 6;
16:  Update r <— r+1, V( J=v
(v gl v

Ql(ng b Pg

|§€01"Z>Qmax}

,pgﬁ) = p,ﬂgf) =6;
) ’ ) ))

17: until (

> Omax;

18: Outputs: V(P!

0 < & or
)

= v plort) = p() glort) — g(r),

4.2 Proposed Method for SOOP of SHEM

4.2.1 Joint Design of TPMs and PSRs: Similar to Sub-
section 4.1.1, by fixing 6, problem (7) can be rewritten
w.rt. Vand p as

mm 2 (V,p) ZC (23a)
Vp

s.t.  (6b),(6f),(9D), (9c). (23b)

In problem (23), constraints (9b), (9c) are handled in
Subsection 4.1.1 and, thus we focus on handling the
non-convex OF. To this end, we introduce auxiliary
variables ¢ = {8,0,,---,0.} satisfying

-1
(1 n e*”ff@f’("fp)*”ﬁ) Y, >0,0eL.  (24)
Then, the OF is lower-bounded by [34]
EVE(V,p) >T 0,0 € L. (25)

By denoting A £ {A1, Ay, - - -
be recast as

,AL}, inequality (24) can

1-Y,—=YAy =8, > M0y, L€ L, (26a)
e(V,p) +a; In(Ag) > by L€ L. (26b)

To handle non-convex constraints in (26a), we adopt
Lemma 2 in [34] to find the upper bound of A,%¢, at

given Agm) and ﬁgm) at iteration m as follows
¢(Ar, 8¢) 05 ()‘gm)ﬂém)'_lﬂ% + ﬁém))‘ém)'_l/\%)
> Ay (27)

Then, constraints in (26a) can be expressed as convex
ones

1-Y,— YAy — 6y > q)(/\g,ﬁg), tel. (28)

Next, to tackle non-convex constraint (26b), we utilize
the following inequality [35]

YH X1y = YO H x0m =1y oy H x(m), =1y (m)

— y(m)H x(m), =1 x x(m),~1y(m)
VY, Y™, X =0, X" - 0. (29)
Accordingly, the lower bound of

&(V,p) = Tr (Zle (H, V)T x; ! Hévi) with given

pém) and Vl(m) at iteration m can be determined as

L o\ H _
&i(V,p) = Tr (2 (V™) X" 1Hgvi>

i=1

L
+Tr (Z (H, V) X" H, V§””>

i=1

s (M H 3 (), Ty 3 (m),~1 1 7(m)
—Te (2 (V) X X, v

i=1
28V, p), (30)

where X, ' = (1—p,) Iy, and Xgm)’_l =(1- pgm)) Iy, .

Then, constraint (26b) can be reformulated as the con-
vex constraint as follows

&(V,p) +a; In(Ay) > by, V0 e L. (31)

From the above discussion, the design problem (23)
w.r.t. variables {V,p} is recast as

mll?/\ 2 (V,p) ngﬂg (32a)
Vo,
st.  (6b),(6f),(13), (14b), (28), (31). (32b)

Problem (32) is to minimize the linear OF over the
convex constraints. Thus, its optimal solution can be
efficiently obtained by the CVX packages [28].

4.2.2 Design of the Phase Shifts: Similar to Subsec-
tion 4.1.2, problem (7) can be expressed w.rt. the
variables 0 as

L

min O (0) 2 — Y &)'H(0) s.t. (6e), (15b), (15¢). (33)

(=1
Considering the non-concave function ¢NL(8), we can
derive its lower bound with the same approach in (25)

as follows
eV () > Ty, Ve e L (34)

with additional constraints in (28) and

(1—p¢) ¢ (8) +a, ' In (Ag) > by. (35)
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where o, (0) is determined as (19). Accordingly, prob-
lem (33) can be reformulated as

L N N
min Qz(ﬂ)é—zreﬁwrﬁ(z}*ﬂr Zw)
6,19,/\,]4,1/ /=1 n=1 n=1
(36a)
st (22b),(22¢),(22d), (20a), (21), (28), (35), (36b)

whose optimal solutions can be efficiently obtained by
convex optimization solvers.

Finally, the details of the iterative algorithm to alter-
natively obtain the BS TPMs, PSRs and PSM to optimize
the SHE are represented in Algorithm 2.

Algorithm 2 An AO algorithm for the SHEM
1: Inputs: Set € and Qqx.
2. Initialization: feasible V(0 = VEQO), 00 — 6&0)

p0) = p§°>, and set r = 0.
3: repeat
4 Setm=0, VM = Vg), p(’”) = pgf);
5:  repeat
6: For given 0 = 6@, solve problem (32) to obtain

the solutions V and p;
7: Update m <— m+1, v =
1 |QZ(V ) (m)) QZ( y(m—1) P
O (V m—1) p(m 1))

v/p( ) - P/

ml
8 unti |<£orm>

Omax,

9: Obtain V=V, p=p;
100 Set B> 0, Puax >0,8>1,2z=0,0% =o;
11:  repeat

12: For given V, p, solve problem (36) to obtain 6;
13: Update z % z+1 ,3 min (88, Bmax), 07 = 6;
1 o1 [22(69)—0p(6% 1))

: until < €0r z2 > Omax;

(06~ ”)
15.  Obtain 6 = 6;

16:  Update r + r+1, V( "= V,pi) =p, eﬂﬁ =6;
‘OZ(V(J /pir)’ey))_ﬁz( (r 1) (7 1) 9567*1))
17: until - 0T e T < € or
(v p! )
T > Omax;

18: Outputs: viort) — VS:),p(OPt) = pi’),(a(or’f) = Bir).

4.3 Proposed Method for MOOP of SRM and SHEM

It is very difficult to jointly find the optimal solution
to (8). To tackle it, we transform the MOOP of the
SRM and SHEM into a SOOP by using the MWT
method [21]. Given Q] and 3 which are respectively
the optimal values of SOOP 1 and SOOP 2, the MOOP
in (8) can be recast as

0y (V,p,0) — O}
Qy

meg V,p,0) £ max w
min, (V,p,0) jmax, wp

O, (V,p,0) — Q)
4T q( p ) q

(37a)

{12} ‘QS
s.t. (6b) — (6f), (37b)

where 7 is a sufficiently small positive scalar which
is normally chosen between 0.0001 and 0.01 [21]. The

weighted parameters w, € [0,1] with w; + w, = 1 can
be set to the different values to investigate the tradeoffs
between the achievable SR and achievable SHE.

4.3.1 Joint Design of TPMs and PSRs: Problem (37) can
be recast w.r.t. V and p as follows

O, (V,p) —Q;
mln Q3 (V,p) £ max w, u

Vp pe{12) ]o;;
Q. (V,p) —Q
4T q(f’)q] (38a)
qe{1.2} ‘Q;
s.t. (6b), (6f), (9b), (9¢). (38b)

By introducing slack variable 7, problem (38) can be
equivalently expressed as

fin O3 (V.p) 27 (39a)
A
s.t. (6b), (6f),(13), (14b), (28) (31), (39b)
1+7~
— (V, — 0 (V,
o 1(V,p) + ‘Q| 2(V,p)
< /. 1-27, (39¢)
w1
T - 1471~
7*.(2 V, + 7*.(22 V,
<L _1_9q, (39d)
wy

which is a convex optimization and can be solved by
available convex optimization solvers.

4.3.2 Design of the Phase Shifts: This subsection aims
to find the optimal IRS PSM. To end this, we solve the
following problem

Q,(0) — QF
min (3 (0) = max  wy M
pe{12} ‘Q;‘,
Q, (6) — O
+t Yy 1(0) 4 (40a)
ST (o
(6e), (15b), (150). (40b)

Similar to Subsection 4.3.1, problem (40) can be recast
as a convex OP

minQ3()_n+ﬁ<Zyn+Zvn> (41a)
t. (20a),(21),(22b), (22¢), (22d), (28), (35), (41b)
1471~ noL
|Ql| —0 (0) + |Qz|Q 2 (6) < o 1—27, (41¢)
14+71~ n
—— (0 +——-0» (6 4 —1-271, (41d
|Ql| 1(6)+ 1023 2(0) < w2 @ (ld)

which can be efficiently solved by convex optimiza-
tion solvers.

By solving the convex OPs in (39) and (41), the
iterative algorithm to find the optimal TPMs, PSRs and
PSM is described in Algorithm 3.

It is important to mention that in Algorithms 1, 2
and 3, each sub-problem is convex and, thus, its OF
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Algorithm 3 An AQO algorithm for the MOOP
1: Inputs: Set & and Qax-

2. Initialization: feasible V(0 = VSFO), 00 = Gio)

p0 = pgo), and set r = 0.

3: Set weighted parameter sets wy and wy =1 — wy;
4: repeat

5  Setm =0, vim) — Vg), p(m) = pgj);

6:  repeat

7: For given 0 = 9@, solve problem (39) to obtain

the solutions V and p;

8: Update m < m+1, vim —
0 (m) (m) v(m )

o. until V"0 (
O3V, )

—V,pm = 5,
ml
|<sorm>

Omax, _
10: Obtain V=V, p =p;
1: SetB>0, Byax >0,6>1,z=0,0 =0\
12:  repeat

13: For given V, p, solve problem (41) to obtain 6;
14: Update z <— Z+1 ,B min (68, Bmax), 0 02 = =0;
15:  until 256 = )05 (60 | < €0r 2> Qmax;

Q§(9(Z 1))
16:  Obtain 6 = 6;

172 Update r < r+1, Vg) Vv, pﬁ) =

0,V o0 -0,V 0 )

QS‘(VSJ‘—I)’ £r—l)/eir 1))

*/—\

o) — g

I

18: until < € or

> Omax;

19: Outputs: V(P = VSZ),p(OPf) = py),ﬂ("pt) = 953).

is not increasing over iterations. Therefore, the conver-
gence of the AO algorithms is guaranteed since the OFs
are non-increasing and lower-bounded. On the other
hand, the computational complexity of Algorithms 1, 2
and 3 is polynomial-time since their solutions are ob-
tained by convex optimization.

5 NUMERICAL RESULTS

The numerical simulations are conducted to assess
the proposed methods and to investigate the tradeoff
between achievable SR and SHE in the IRS-aided multi-
user MIMO SWIPT system. We examine a scenario in
which the BS is positioned at (0,2) meters and the
IRS is deployed at (3,4) meters while L = 3 users are
randomly located in a circle centered at (5,2) meters
with radius 2 meters [5, 36]. The BS, which has N; = 4
antennas, sends d; = 2,V{ € L data streams to each
user equipped with N, = 2 antennas. The path loss
between two nodes with the transmission distance x is
modeled as PL = PLg (x/xg) “, where a represents the
path loss exponent, PLy = 102 denotes the path loss at
the reference distance xy = 1 meter [5]. We examine sce-
narios where direct links from the BS to users encounter
deep fading and shadowing. Consequently, the path
loss exponents for these channels are set to apy; = 3.75.
Simultaneously, to enhance signal transmission from
the BS to users, the IRS is strategically positioned,
ensuring that the line-of-sight paths from the BS to
the IRS and from the IRS to users are predominant.
Consequently, the path loss exponents for the channels

from the BS to the IRS and from the IRS to users
are respectively set to ap; = 2.2 and ajy = 2.2 [30].
The small-scale fading channels from the BS to the
users adhere to the Rayleigh distribution while the
other channels conform to the Rician distribution with
a Rician factor of 3 [5]. The noise power is set
Ur2£ = 0' = —60 dBm, V¢ € L [27]. The initial penalty
parameter the maximum penalty parameter, and the
update step are set B = 10, Buax = 1000, and 6 = 5,
res;)ectlvely Unless otherwise stated, we set N = 30,

= 001 mW, r,7 = 1 bps/Hz, P, = 24 mW,
Clg = 150,b; = 0014 Ve € L [26]. Regarding the it-
erative algorithm, we set @y = 100 and € = 103. The
numerical results are obtained by averaging over 100
random channel realizations.

Example 1: We investigate the convergence behaviour
of the proposed MOOP algorithm under a specific
channel realization with the maximum TP P,,;, = 40
dBm and different values of w; in Figure 2. It is
observed that the proposed MOOP algorithm reaches
the convergence within 50 iterations. The results in
Figure 2 also reveal that the convergence of MOOP
can be reached faster for the smaller value of w;.
The reason is that with the smaller values of wj, the
MOOP prioritizes to optimize the SHE in the OF in
which the OF of the SHE is approximated by a linear
function and, thus, the optimal solution can be obtained
efficiently. Additionally, Figure 3 depicts the evolution
of the achievable SR and SHE of the SOOPs and the
MOQOFP algorithm under a specific channel realization,
respectively. It can be seen that the achievable SR and
SHE are simultaneously non-decreasing over iterations.
Moreover, since the MOOP have to ensure the tradeoff
between the SR and SHE, the optimal values obtained
by the MOOP with different quantities of w; are always
lower than the values of the corresponding SOOPs.

0.25

—o—MOOP, w; = 0.1
— % MOOP, w; = 0.5
—&—MOOP, w, = 0.9

0.2

015 ke ke ke

01r

0.05 - M@—e—e—e—e—e—e—<

0 10 20 30 40 50 60 70 80
Number of iterations

MOOP objective function

_——

Figure 2. Convergence behaviour of the MOOP algorithm.

Example 2: This example evaluates the average achiev-
able SR by using Algorithm 1 to solve SOOP 1 and the
achievable SHE of all users by applying Algorithm 2
to solve SOOP 2 under different maximum TP levels of
the BS. In addition to our approach, namely “Optimal
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Figure 3. Achievable SR and SHE of the MOOP and SOOP algorithms.

phase", in which the TPMs, PSRs, and phase shifts are
alternately optimized, we also consider two benchmark
schemes, namely “Fixed phase" and “No-IRS", for com-
parison. For the fixed phase schemes, the phases of
reflection element are fixed to be zero [13, 30]. For the
No-IRS schemes, there is no IRS in the system. Figure 4
shows that the achievable SR and the achievable SHE
of all considered schemes increase with Py,,;,. However,
the optimal phase schemes significantly outperform the
other schemes. This is because for the optimal phase
schemes the phase shifts at the IRS are optimized to
create favourable effective transmission environments
to improve the system performance in terms of the
HE and achievable rate at all users. Moreover, the
results indicate that the system performance in terms
of the achievable SR and the achievable SHE with the
fixed phase schemes is not much better than No-IRS
schemes. Thus, optimizing the IRS phase shifts in a
MU-MIMO SWIPT system assisted by the IRS is crucial
for the system performance improvement. One interest-
ing observation from Figure 4 is that as the TP exceeds
40 dBm the increase of the SR tends to be slower,
while the increase in the achievable SHE becomes more
pronounced. This is because that, for the SRM as shown

in Figure 4(a), when the TP increases the co-channel
interference also increases. On the contrary, for the
SHEM as shown in Figure 4(b), as the TP increases
the minimum user data rate and HE constraints are
easily satisfied, and then the TP is maximally exploited
to maximize the sum EH.

N
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—#— No-IRS
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Figure 4. Average achievable SR and average SHE of users versus the
maximum TP of the BS.

Example 3: By applying Algorithm 3 to solve the
MOOP, we investigate the tradeoffs between the achiev-
able SR and the SHE of the users. Figure 5 provides
the numerical results of the average achievable SR and
SHE with various maximum TP Py, = {38,40,42}
dBm, which are obtained by changing the quantities
of weighted parameters w; € {0.1,0.3,0.5,0.7,0.9},
wy = 1—wi, and T = 0.005. The results depicted in
Figure 5 indicate that the achievable SR reduces as the
achievable SHE increases. This proves that the SRM
and the SHEM problems do not coincide. Specifically,
the results in Figure 5 show that for the region of
the low SHE, a small increase in the achievable SHE
results in the small decline in the achievable SR. In
contrast, when the achievable SHE reaches a certain
level, a small increase in the achievable SHE leads to
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the significant decrease in the achieve SR. Therefore, the
numerical results in Figure 5 demonstrate the insightful
tradeoff between the achievable SR and the achievable
SHE, which allows communication system designers to
control the system performance by setting the appropri-
ate weighted parameters to meet the specific require-
ments. The results also show that the Pareto region
is enlarged as the maximum TP Py, increases. In
other words, both achievable SR and SHE are improved
as Py, increases.

—6— P4, = 38 dBm
—%— P, =40 dBm |
—&— P4 = 42 dBm

25

Average achievable sum rate (bps/Hz)
s & 3

(9]

0 0.2 0.4 0.6 0.8 1 1.2
Average achievable sum harvested energy (W)  « 103

o

Figure 5. Performance tradeoffs between average achievable SR and
SHE obtained by the MOOP algorithm.

6 CONCLUSIONS

In this paper, we have explored the tradeoffs be-
tween the achievable SR and SHE of the users in an
IRS-assisted MU-MIMO SWIPT system under the max-
imum TP budget constraint, the minimum data rate,
and HE requirements at each user by optimizing the BS
TPMs, the user PSRs, and the IRS PSM. To obtain the
insightful tradeoff between the achievable SR and SHE,
we have formulated the design problem as a MOOP,
then applied the MWT approach to cast the MOOP into
a SOOP. Considering the practical NLEH model, the re-
sulting optimization problems are challenging to solve
due to their non-linearity and non-convexity w.r.t. the
coupled design variables. To render the OPs amenable,
we have applied the AO method to partition the origi-
nal OPs into the sub-problems. Then, we have derived
effective surrogate functions to recast the sub-problems
into convex OPs. The numerical simulation results have
illustrated the efficient convergence of the proposed
AO algorithm for the SOOPs and MOQOP. They have
also demonstrated that the systems using the IRS with
optimal PSM can provide significant benefits in SR and
SHE performance gains compared to the counterparts
without using the IRS or with a deployment of the IRS
with fixed PSM. Moreover, the numerical results have
revealed the insightful tradeoffs between the achievable
SR and SHE in the considered system.
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