
REV Journal on Electronics and Communications, Vol. 2, No. 3–4, July – December, 2012 121

Regular Article

Solving the Traveling Salesman Problem with Ant Colony
Optimization: A Revisit and New Efficient Algorithms

Hoang Xuan Huan1, Nguyen Linh-Trung1, Do Duc Dong2, Huu-Tue Huynh3

1 University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
2 Institute of Information Technology, Vietnam National University, Hanoi, Vietnam
3 International University, Vietnam National University, Ho Chi Minh City, Vietnam

Correspondence: Nguyen Linh-Trung, linhtrung@vnu.edu.vn
Manuscript communication: received 12 December 2012, accepted 15 March 2013

Abstract– Ant colony optimization (ACO) techniques are known to be efficient for combinatorial optimization. The traveling
salesman problem (TSP) is the benchmark used for testing new combinatoric optimization algorithms. This paper revisits the
application of ACO techniques to the TSP and discuss some general aspects of ACO that have been previously overlooked.
In fact, it is observed that the solution length does not reflect exactly the quality of a particular edge belong to the solution,
but it is only used for relatively evaluating whether the edge is good or bad in the process of reinforcement learning. Based
on this observation, we propose two algorithms– Smoothed Max-Min Ant System and Three-Level Ant System– which not
only can be easily implemented but also provide better performance, as compared to the well-known Max-Min Ant System.
The performance is evaluated by numerical simulation using benchmark datasets.
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1 Introduction

Ant Colony Optimization (ACO) is a randomized
heuristic search method for solving NP-hard problems
in combinatorial optimization. In principle, it imitates
the biological behavior of a real ant colony when the
ants try to find the shortest path between their nest
and a food source. When foraging, ants deposit on the
ground a substance called pheromone. At any time, an
ant tends to follow a path on which are the pheromone
trails left by previous ants. Ultimately, the ants will be
able to find the shortest path from the food source to
the nest, and the whole colony will follow this path to
transport the food back to their nest.

Inspired by this biological behavior of real ant colony,
ACO is then developed for “artificial ants”. This is
done by formulating the original optimization problem
to the shortest-path problem over a graph associated
with the former problem. ACO combines two types of
information: heuristic information, which is related to the
length of an edge of the graph, and reinforcement learn-
ing information, which is related to the local information
represented by the intensity of pheromone trail on this
edge. The pheromone intensity changes with time. For
example, it could either be reduced (vaporized) if no
other ants visit the edge or be enhanced (reinforced)
if other ants leave more pheromone on the edge. As
such, a rule or a set of rules is established for updating
the pheromone intensity. The update rules in a specific
ACO algorithm represent a search strategy of the algo-
rithm and, hence, influence its efficiency.

ACO algorithms have been successfully applied, with
high efficiency, to a wide range of different combina-
torial optimization problems. The first ACO algorithm,
called the Ant System (AS), was proposed by Dorigo
in [1] and [2] for solving the well-known Traveling
Salesman Problem (TSP). In the TSP, a salesman takes
a tour, which is a closed path, through a set of cities
under a condition that all cities must be visited and
each city is visited once only. The objective is to find the
shortest tour; hence, a tour is also called a solution. The
TSP is so important so as to have become a benchmark
for evaluating the effectiveness of a new algorithm.
In this paper, we will use the TSP for comparing the
algorithms. It is well known that ACO for the TSP is
typically not well performing without a local search.
However, in this work, we focus only on the behavior
of ACO and, hence, isolate ACO from the local search
in order to understand the behavior. If one is interested
in solving the TSP using ACO and comparing it with
other algorithms, the local search should be combined
with ACO.

Many variants of AS have been developed (see for
examples [1–9]), among which the Ant Colony System
(ACS) [5] and the Max-Min Ant System (MMAS) [9]
are the two most popular algorithms. There have also
been various theoretical studies on the convergence and
other characteristics of ACO algorithms (see [10–14]).
These studies give guidance on how to select relevant
parameters that are useful for improving the efficiency
of an algorithm. It can be seen that the state-of-the-
art ACO algorithms follow a main stream wherein
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the length of a solution is considered important in
performing updates of the pheromone intensity on an
edge. In turns, the quality function of an algorithm,
specifying how the pheromone intensity is adjusted in
each update, is often formulated to be dependent on the
solution length. For example, the quality function in the
TSP problem is inversely proportional to the solution
length. However, for new problems other than the TSP,
experimental studies often need to be carried out care-
fully for determining a suitable model for the quality
function as well as for predefining the upper and lower
bounds constraining the pheromone intensity, in order
to make the algorithm implementation efficient.

In this paper, by analyzing the variation tendency
of the pheromone intensity and the quality of an edge
with respect to the length of a solution to which this
edge belongs, we observe that the solution length does
not reflect exactly the quality of the local information
of the edge. Hence, unlike the above-mentioned main
stream in the ACO literature, we advocate for not using
the solution length in updating the pheromone inten-
sity on an edge at each iteration but only using it for
relatively evaluating whether the edge is good or bad in
the process of reinforcement learning. Experimentally,
this will help avoid the burden involved in determining
the quality function as well as the lower and upper
bounds on the pheromone intensity. Based on this
observation, we propose two new update rules, which
are called the Smoothed Max-Min Ant System (SMMAS)
and the Three-Level Ant System (3-LAS), wherein the
solution length is now not used for updating but only
for relatively comparing the solutions constructed in
order to find the best solution. In addition, the bounds
in these algorithms are predefined in a relative manner
rather an absolute one. 3-LAS is a further improvement
on SMMAS by the introduction of a new parameter
between the bounds in order to enhance edge classifi-
cation. As a result, the implementation of these rules
are much easier than those in AS, ACS or MMAS. In
addition, experimental results show that SMMAS and
3-LAS outperform MMAS.

The paper is organized as follows. Section 2 intro-
duces the general procedure for ACO used for solving
the TSP and the update rules in AS, ACS and MMAS.
Section 3 provides some mathematical analysis and
discussions on the variation tendency of pheromone
intensity and the effect of the solution length on the
edge quality in local updates. Section 4 gives details on
the proposed algorithms, SMMAS and 3-LAS. Section 5
shows numerical simulation results, comparing these
algorithms with MMAS. Section 6 concludes the paper.

2 ACO Algorithms for Solving the TSP

2.1 The Traveling Salesman Problem

Consider a set of N cities whereby the lengths of
connections between pairs of cities are known a priori.
Starting from a particular city, a salesman traverses
through all other cities and returns to the starting city
under the condition that to each city he visits once

Procedure 1 General procedure for ACO algorithms
1) Initialize:

number of ants (m), number of iterations (T), and
other relevant parameters
set pheromone intensity τij = τ0 for all eij ∈ E

2) for t = 1 : T do
3) Construct m solutions (for m ants) using random

walk
4) Adjust the pheromone intensity using update

rules
5) end for
6) Obtain the best solution s∗(T)

only. The objective of the TSP is to find the shortest
tour taken by the salesman. The general TSP can be
described in graph terms as follows. Let G = (V , E)
be a complete graph, where V is the set of N vertices
and E is the set of directed or undirected edges fully
connecting the vertices. For simplicity, we only consider
the so called simple graph, that is, each pair of vertices
i and j is connected by only one edge. Denote by eij the
edge connecting i and j. Each eij is associated with a
positive weight, called the edge length and denoted by
lij. If there exists at least one eij such that lij 6= lji, then
the problem is said to be the asymmetric TSP (ATSP).
A tour is often called a solution, and the tour with the
shortest length is the optimal solution.

2.2 General Procedure for ACO Algorithms

Assume that there are m ants and each ant can
determine how far it is away from a city. The ants
also endow with a working memory for memorizing
the cities they have visited. The practical procedure of
an ACO algorithm, as summarized in Procedure 1, is
of an iterative nature and performs a finite number
of iterations, T. At initialization, set the values of the
pheromone intensity on every edge in E to τ0, with
τ0 > 0, and pre-define T and other relevant parameters.

Next, for each iteration t, with 0 < t ≤ T, all m ants
are first randomly placed in the cities. Then, each ant
k, with 1 ≤ k ≤ m, constructs its own solution, sk(t),
step-by-step by repeating the procedure of random
walk, as presented in Section 2.3. The lengths of all
the constructed solutions are then compared and, next,
used for updating the pheromone intensity on edges.

Let s∗(t) be the best solution constructed up to
iteration t. Then, after T iterations, we obtain s∗(T) and
call it the “good-enough” solution of the TSP. Note that,
because T is finite, the “good-enough” solution might
not be the optimal solution but be good enough for
practical purposes. The number of solutions, S, that we
want to construct is S = mT. Often, one uses the same
S to compare different algorithms although the values
of m used in the algorithms may be different.

2.3 Procedure of Random Walk

Within an iteration and at each step in the process
of constructing a solution, an ant located at some city
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makes a probabilistic choice for going to another city to
which this ant has not previously visited. This choice
depends on the pheromone intensity on the edge and
the heuristic information of the edge, which are locally
available. Generally, an ant prefers paths which have
strong pheromone intensity, and cities which are close
to it. Mathematically put, at iteration t, an ant k located
in city i chooses to go to city j with a transitional
probability of

Pk
ij(t) =


τα

ij(t)η
β
ij

∑
u∈Jki

τα
iu(t)η

β
iu

, j ∈ Jki,

0, otherwise,

(1)

where τij(t) is the pheromone intensity on edge eij, ηij
is the heuristic information (ηij = 1/lij), Jki is the set of
cities to which this ant has not previously visited, α and
β are parameters that determine the relative importance
of the pheromone intensity and the heuristic informa-
tion. Note that when applied to ACS the transitional
probability defined in (1) has some slight modifications.
These modifications, however, do not affect the analysis
and discussion provided in Section 3. Hence, we skip
them for the simplicity of presentation.

2.4 Important Pheromone Update Rules

2.4.1 Ant System (AS): At iteration t, when step (3) in
Procedure 1 has completed, the pheromone intensity on
each edge eij is updated by the following update rule:

τij ← ρτij + ∆τij, (2)

with the pheromone deposit, ∆τij, for AS being defined
as

∆τ
(AS)
ij =

m

∑
k=1

νk, (3)

where νk = 1/Lk if eij ∈ sk(t) and νk = 0 otherwise;
Lk is the length of solution sk(t). The update rule
described by (2) is general for all ACO algorithms
while the rule by (3) is specific for AS. The general
update rule in (2) includes two types of adjustment to
the pheromone intensity on eij. The first adjustment
is due to the natural evaporation of the pheromone
intensity updated in the previous iteration; the intensity
is reduced by the evaporation factor, ρ, with 0 < ρ < 1.
The second is the pheromone deposit, ∆τ

(AS)
ij , on eij

which is newly added when this edge was traversed
by some ants.

2.4.2 Ant Colony System (ACS): In ACS, the
pheromone update rules expressed by (2) and (3)
are modified to change both locally and globally.

2.4.2.1 Local update: The local update rule is ap-
plied to edges which have been visited by the ants
during iteration t. In the process of constructing its
own solution, when an ant traverses through eij it
changes the pheromone intensity on this edge locally
by applying the following update rule:

τij ← ρτij + (1− ρ)τ1, (4)

where τ1 is a predefined positive constant. At initializa-
tion, the pheromone intensity is set to be τ0 = 1/(nLnn),
where Lnn is the solution length found by the nearest
neighbor heuristic method in [15]. Note that, in the
original ACS [6], τ0 and ξ are used in (4) in replacement
of τ1 and ρ, respectively. However, since they do not
affect the analysis and discussion in Section 3, we just
use τ1 and ρ here for the simplicity of presentation.

2.4.2.2 Global update: The global update rule is
applied only to the edges belonging to the best solu-
tion, s∗(t), at the corresponding iteration, t. This best
solution is either called “globally-best” (gb) if it is the
best for all iterations up to t, or “iteration-best” (ib) if it
is the best for iteration t. Once all solutions have been
constructed for iteration t, the pheromone intensity on
all eij ∈ s∗(t) are updated according to the general
update rule (2), with the pheromone deposit, ∆τij, for
ACS being defined as

∆τ
(ACS)
ij = (1− ρ)

1
Lgb

, (5)

where Lgb is the length of s∗(t).
2.4.3 Max-Min Ant System (MMAS): MMAS is a di-

rect improvement on AS with the following modifica-
tions. Firstly, like the global update rule in ACS, once
all solutions have been constructed at an iteration, only
edges which belong to the best solution are updated us-
ing the general update rule in (2), where the pheromone
deposit, ∆τij, for MMAS is given by

∆τ
(MMAS)
ij =

{
(1− ρ) 1

Lgb
, if eij ∈ s∗(t),

0, otherwise.
(6)

Secondly, the pheromone intensity τij on eij is con-
strained in the interval [τmin, τmax], where τmin and
τmax are predefined non-zero parameters. These non-
zero parameters are used to reduce stagnation– a situ-
ation in which all the ants follow the same path and
construct the same solution but not yet optimal. Once
the above global update has been performed and if τij
falls outside of [τmin, τmax], then τij is re-adjusted by the
following:

τij =

{
τmin, if τij < τmin,
τmax, if τij > τmax.

(7)

The choices of τmin and τmax greatly influence the
efficiency of the algorithm. Thirdly, re-initialization is
used in MMAS when stagnation occurs. Fourthly, when
the algorithm is near convergence, smoothing the change
of pheromone intensity is then used in order to enhance
the exploration, which extends the search to new solu-
tions for finding more good solutions. This smoothing
replaces the rule defined in (6) with the following
update rule:

τij ← τij + δ(τmax − τij), (8)

where δ is a constant, with 0 < δ < 1.
Despite the fact that ACS and MMAS have been well

analyzed (e.g., in [9]), we will focus on the behavior of
the pheromone intensity in these algorithms in the next
section. The analysis will serve as a basis for our later
proposing new algorithms.
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3 Pheromone Variation Tendency and

Effect of Solution Length on Edge

Quality

In the TSP, like in other NP-hard combinatorial op-
timization problems, we can perform an exhaustive
search to obtain the optimal solution in principle . How-
ever, exhaustive searching is not desirable in practice
because when the search space is too large we could
possibly not be able to search the whole space due
to limited resources. To reduce the search space, ACO
makes use of heuristic information, related to the length
of an edge, and applies reinforcement learning, locally
related to the pheromone intensity on the edge. In other
words, at each iteration, instead of performing a ran-
dom search over the entire set of admissible solutions,
ants prefer to search for edges which are short in length
and strong in pheromone intensity, as modeled by the
transitional probability defined in (1); hence, the search
space is reduced.

A randomized search based on the heuristic infor-
mation makes the search be more dynamic and flexible
on a space larger than that in other methods based on
heuristic information. As a result, a better solution or
even the optimal solution may be obtained. In addition,
when further combined with reinforcement learning,
the size of the search space is gradually reduced with-
out eliminating the majority of good solutions; hence,
the algorithm performance is improved. Therefore, the
performance of an ACO algorithm largely depends on
the rules defined for pheromone updating and their
associated parameters.

Various theoretical and experimental studies have
been carried out in order to better understand ACO
algorithms, to improve their efficiency as well as to
examine ways of selecting algorithm parameters. How-
ever, several questions are of concern, after the update
rules have been applied. First, when the search space
is reduced, the search action might skip good solutions
which do not belong to the reduced search space; that
means the degree of exploration is reduced. Whereas,
if we want to increase the exploration then we need
to enlarge the search space. How do we define a good
update rule in order to compromise between the explo-
ration and the size of the search space? Second, an edge
belongs to many solutions having different lengths, and
the pheromone intensity update for this edge at each
iteration randomly depends on the solutions that the
ants constructed. How does the relationship between
local information and global information affect the
algorithm efficiency? Third, in each update, how much
of adjustment in the pheromone intensity update is
appropriate? In the following, we will provide more
insights toward these questions.

3.1 Variation Tendency of Pheromone Trails

In the TSP, there always exists an optimal solution
because the number of admissible solutions is finite.
Let Lopt be the length of the optimal solution. It can be
easily verified that for ACS the pheromone intensity on

eij always satisfies the following inequality

τij ≥ min{τ0, τ1,
1

Lopt
}. (9)

The right-hand side of (9) is set to be τmin. Denote by
ps(k, t) the probability that ant k constructs solution
sk(t) at iteration t. For both ACS and MMAS, it has
been shown that there exists a positive constant p0 such
that ps(k, t) > p0 for all sk(t), k, and t [11]. This means
that all edges have an opportunity to be chosen by the
ants.

In terms of pheromone convergence, some funda-
mental results were established by Gutjahr in [10],
and by Stützle and Dorigo in [11]. Specifically, by
using Markov models, Gutjahr provided a proof for
convergence in probability for a rather large class of
ACO algorithms, including MMAS. Stützle and Dorigo
considered the convergence for ACS provided that the
optimal solution has been found. Even though these
fundamental results are significant, one can only im-
plement a finite number of iterations in practice. Hence,
it is still desirable to have more insights about the
behavior of pheromone intensity in order to improve
the algorithm performance.

Starting from a big enough iteration, the pheromone
intensity on most edges quickly becomes small and,
hence, the algorithm focuses on searching around the
best constructed solution [16]. This implies that ants
tend to update around the edges that have strong
pheromone intensity (near τmax in the case of MMAS).
The pheromone update rules and other results in [10]
and [11] give the variation tendency of pheromone
intensity on the edges that belong to the best solution.
The following proposition provides the tendency on the
edges that do not belong to the best solution, for ACS
and MMAS.

Proposition 1. Assume that edge eij belongs to an admissi-
ble solution s(t) and that there exists t0 such that eij does not
belong to the best solution s∗(t) for all t ≥ t0. The following
assertions are true:

1) If the ACS update rule is applied then τij(t) converges
in probability to τ1;

2) If the MMAS update rule is applied then τij(t) = τmin
for all t satisfying

t > t0 +
ln(τmin/Lopt)

ln(ρ)
. (10)

Proposition 1 shows that the pheromone intensity on
the edges which do not belong to the best solution
converges to τ1 in the case of ACS, and to τmin in the
case of MMAS. For MMAS, this proposition indicates
that the pheromone intensity on edges which do not
belong to the best solution quickly reduces to τmin; in
other words, it implies that the exploration decreases
quickly. In addition, this proposition re-confirms the
variation tendency of pheromone intensity for ACS,
which was stated by Stützle and Dorigo in [11] under
the assumption that the optimal solution has been
found. In the following, we will explain in more detail
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Figure 1. (a)– solution through eij but emp; (b) – solution through emp but eij. The two solutions differ by three edges.

how ACS and MMAS deal with exploration enhance-
ment. Later, in Section 4, we will propose some new
updating rules to compromise between the exploration
and the intensification in reinforcement learning. Note
that intensification is a search strategy that focuses the
search to perform around the best solution.

In ACS, the use of the global update in reinforcement
causes searching around the best solution. Equation (9)
shows that it reduces stagnation. Hence, the efficiency
of ACS is improved, as compared to AS. However, it
also reduces the exploration when using the global-
best updating, and experimental studies suggest that
iteration-best updating is better. In addition, unlike AS,
the local update rule in ACS reduces the pheromone
intensity along the solution that was not good while its
pheromone intensity had been previously increased. In
an indirect way, it increases the exploration at edges
which are not often used by the ant. However, this
expansion causes the search space to become too large
and, thus, limits the algorithm efficiency.

In MMAS, the constraint of pheromone intensity to
be in [τmin, τmax] helps avoid stagnation and enlarge the
diversification (i.e., exploration of new search regions
through the introduction of new attribute combina-
tions), in comparison with AS and ACS. Setting τ0
to be τmax and m to be large makes the pheromone
intensity on bad edges slowly decreased and the di-
versification increased. In addition, the re-initialization
of the pheromone intensity to be τmax, whenever the
pheromone intensity on most of the edges which do
not belong to s∗(t) is very close to τmin, also enhances
the diversification. Therefore, MMAS is more efficient
than ACS. However, a convenient way to pre-define
τmin and τmax depends on each specific optimization
problem and finding it is still an open issue.

3.2 Effect of Solution Length on Edge Quality

While constructing a solution, the probabilistic choice
by which an ant decides to move from one city to the

next is biased by the local information of this edge in
terms of its pheromone intensity and length. However,
only the edges which belong to the best solution have
their pheromone intensity increased. Naturally, an edge
is considered bad if the length of the solution to which
it belongs is long, and considered good, otherwise.

In an undirected complete graph with N vertices,
there are (N− 2)! solutions that consists of a particular
edge. This gives rise to the following question: Does
the length of a solution to which an edge belongs reflect
exactly the quality of the local information of this edge?
The following proposition will provide an answer to
this question.

Proposition 2. Let eij and emp be two different edges of
an undirected complete graph. For any arbitrary Hamilton
circle which goes through eij but emp, there always exists
another Hamilton circle that goes through emp but eij such
that these two circles have at most three different edges.

This proposition can be illustrated in Figure 1. Fig-
ure 1(a) presents the solution that includes eij but emp.
Since, m cannot connect to p, there must exist two
vertices n and o forming the edges emn and eop. In
addition, there may be a number of edges between n
and o. A solid arrow indicates an edge between two
vertices and a dotted arrow indicates that there may be
a number of concatenated edges in between. Now, we
implement a change of the solution in Figure 1(a) to
the solution in Figure 1(b) such that the latter solution
includes emp but eij. Since m is now directly connected
with p, there exists no longer edges emn and eop. Also,
since there is no longer edge eij, i must be connected
with another vertex, and j similarly. For a minimum
number of changes between the two solutions, one can
let i be connected with n and o with j, thus, forming
edges ein and eoj. Clearly, the two solutions differ by
three edges: (eij, emn, eop) in the first solution while (ein,
eoj, emp) in the second one. This proposition suggests us
to revisit the issue of how to evaluate the quality of an
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edge in ACO algorithms, as in the following discussion.
3.2.1 On relationship between local and global informa-

tion: While constructing a solution by the procedure of
random walk, each ant uses the local information of
the unvisited edges but the decision for updating the
pheromone intensity depends on the relative compar-
ison among the lengths of the constructed solutions.
Proposition 2 indicates that, when there is a large
number of vertices, the length of each edge is very
small in comparison to the length of a solution to
which this edge belongs, hence, it takes a very weak
role in the quality of the solution. Therefore, at each
iteration, an edge may be a component of a good
solution or bad one by chance and, therefore, it is
evaluated to be good or bad also by chance. After a
number of iterations, the pheromone intensity on a bad
edge quickly becomes very small and, hence, the edge
will almost be eliminated out of search space. This is a
limitation of ACO algorithms.

3.2.2 Quality of updated pheromone deposits: In ACS
and MMAS, the updated pheromone deposit on each
edge depends on the length of the solution to which
this edge belongs. Proposition 2 indicates that this
dependency is complicated and unnecessary. Indeed,
the length of the solution is mainly used for evaluating
if the edge is good or bad in a relative manner.

4 Proposed Algorithms

Based on the analysis in Section 3, we propose two
ACO algorithms in this section. Specifically, these al-
gorithms differ from state-of-the-art algorithms in two
main points. First, the solution length is not used for
updating the pheromone deposit. Second, the lower
and upper bounds, τmax and τmin, are not defined in an
absolute manner; instead, they are defined in the form
of the ratio τmax/τmin. In our experience, this ratio is
set by

τmax

τmin
= Nk,

τmid
τmin

= k, (11)

where

k =

{
(N + 50)/100, for N ≥ 50,
1, otherwise.

(12)

The choices in (11) are based on ad-hoc considera-
tion of the algorithm complexity. In fact, we wish to
have τmax/τmin proportional to the possible number
of tours while τmid/τmin is this proportional constant
k. Following the architecture of our algorithms, our
choice seems minimizing their complexity. This point
will be illustrated by the simulated results in Section 5.
Furthermore, the number of vertices in each instance
is greater than or equal to 50; hence, our best linear
estimate for k is as given in (12).

4.1 SMMAS (Smooth Max-Min Ant System)

As by (8), Stützle and Hoos [9] have suggested a way
to smooth the pheromone intensity in order to increase
the exploration of MMAS when the algorithm is near

convergence. The solution construction in SMMAS is
the same as in MMAS. The improvement, as compared
to MMAS, is done by using the general update rule
defined by (2) with the following modification to the
update rule for the pheromone deposit

∆τ
(SMMAS)
ij =

{
(1− ρ)τmax, if eij ∈ s∗(t),
(1− ρ)τmin, otherwise.

(13)

Together with pre-defining the ratio of τmax/τmin, this
update rule simplifies the implementation of the al-
gorithm and avoids difficulty in determining the ab-
solute values for τmin and τmax. In comparison with
MMAS, the pheromone intensity updated in SMMAS
changes more slowly and always remains in the interval
[τmin, τmax], hence less computation is executed in the
algorithm.

4.2 Three-level Ant System (3-LAS)
In [7], an algorithm called Multiple-Level Ant System

(MLAS) was proposed to improve on both ACS and
MMAS. Inspired by MLAS, 3-LAS also employs a new
parameter in the interval [τmin, τmax], denoted by τmid,
in order to enhance edge classification. The solution
construction in 3-LAS is the same as in MMAS. The
update rule is improved, combining the advantages of
SMMAS and MLAS, by using the general rule (2) with
the pheromone deposit being modified according to the
following rule:

∆τ
(3-LAS)
ij =


(1− ρ)τmax, if eij ∈ s∗(t),
(1− ρ)τmid, if eij 6∈ s∗(t) and

∃ an ant uses it,
(1− ρ)τmin, otherwise.

(14)

Note that when τmid = τmin, 3-LAS becomes SMMAS.
In addition to using τmax/τmin, we also pre-define the
ratio τmid/τmin rather than the absolute value for τmid.
Hence, similar to SMMAS, this simplifies the imple-
mentation of the algorithm. This update rule is simpler
than ACS and has the same algorithmic complexity.

5 Simulation

To evaluate the performance of the algorithm, we
numerically compare it with MMAS (without using
local search) using 12 benchmark datasets extracted
from TSPLIB95 [17]: 8 datasets for the TSP (ei51,
kroA100, kroB150, d198, kroA200, lin318, att532
and rat783) and 4 datasets for the ATSP. These
datasets have been tested in [9] and with two additional
datasets kroB150, kroA200 to increase the confidence
in parameter selection. Experimental studies for MMAS
were run by the software package ACOTSP (version 1.0),
developed by Stützle [18], for the first 8 datasets. The
results are better than those published in [9]. ACOTSP
cannot be used for the ATSP datasets [9] so we do
not have data for the second row in each of these
problems. Note that, there have been many simulations
done for large numbers of instances and large ranges
for parameters. Given the fact that we are interested in
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Table I
Solutions Found by MMAS, SMMAS and 3-LAS

dataset MMAS SMMAS 3-LAS

eil51 426.44 (0.10%) 426 (0%) 426.2 (0.05%)
opt: 426 426 428 426 426 426 427
kroA100 21304.4 (0.11%) 21293.44 (0.05%) 21283.12 (0.01%)
opt: 21282 21282 21378 21282 21379 21282 21296
kroB150 26315.72 (0.71%) 26142.28 (0.05%) 26136.44 (0.02%)
opt: 26130 26176 26438 26130 26181 26130 26147
d198 15950.96 (1.08%) 15954.04 (1.1%) 15944.52 (1.04%)
opt: 15780 15875 16034 15884 16005 15841 16014
kroA200 29665.84 (1.01%) 29436.56 (0.23%) 29431.88 (0.22%)
opt: 29368 29422 29843 29394 29540 29394 29546
lin318 42956.96 (2.21%) 42260.48 (0.55%) 42237.68 (0.5%)
opt: 42029 42837 43324 42136 42373 42091 42512
att532 28767.1 (3.9%) 28113.08 (1.54%) 28096.44 (1.48%)
opt: 27686 28636 28920 27885 28683 27888 28240
rat783 9283.6 (5.42%) 8949 (1.62%) 9260.12 (5.16%)
opt: 8806 9249 9336 8901 8998 8946 9539
ry48p 14523.4 (0.7%) 14459.08 (0.26%) 14429.44 (0.05%)
opt: 14422 N/A 14422 14532 14422 14460
ft70 38922.7 (0.65%) 38920.48 (0.64%) 38825.2 (0.39%)
opt: 38673 N/A 38707 39268 38707 39238
kro124p 36573.6 (0.95%) 36566.8 (0.93%) 36445.08 (0.59%)
opt: 36230 N/A 36230 36829 36230 36586
ftv170 2817.7 (2.28%) 2810.8 (2.03%) 2804.04 (1.78%)
opt: 2755 N/A 2790 2854 2790 2838

improving MMAS and ACS as well as understanding
the behavior of ACO instead of comparing different
algorithms for solving the TSP, in our opinion it suffices
to take as benchmark experiment realized by [9].

Each algorithm was run 25 times with the number
of solutions of S = 10000 × N for the TSP datasets
and of S = 20000× N for the ATSP datasets, as done
in [9]. Other parameters: α = 1 and β = 2 as in [9],
m = N/2 and ρ = 0.02. For 3-LAS, we additionally use
τmid/τmin = k. In the simulation, re-initialization as in
MMAS was used to increase the exploration.

The experiment results are presented in Table I. For
a particular algorithm and dataset, the top figure rep-
resents the average length of the best found solutions.
Next to it is the percentage figure in bracket indicating
the deviation from the optimal value (denoted as “opt”
in Table I). The bottom left and right figures represent
the best and the worst solutions in all run-times. Bold
figures indicate the best results across the implemented
algorithms for a particular dataset. Results for the 4
ATSP datasets are shown in the bottom rows.

It can be seen that the average values correctly reflect
the efficiency of the algorithm while the best and worst
values are used as reference for the dynamic range
of the solutions found by the algorithm. In regard to
the average values, it can be seen that, over the 12
tests, 3-LAS gives better results than SMMAS does,
except for tests eil51 and rat783, and SMMAS is
better than MMAS. Considering the best values, the
results show that all the algorithms yield the optimal
values for tests eil51 and kroA100. For the remaining
tests (in the 8 TSP tests), SMMAS and 3-LAS give
better results than MMAS does. Also, for test kroB150,

both SMMAS and 3-LAS found the optimal results but
MMAS. Therefore, we can conclude that, while both
proposed algorithms are simple and easy to use, they
also provide better efficiency than MMAS, and 3-LAS
seems to be dominating.

6 Conclusions

ACO algorithms are efficiently used in combinato-
rial optimization, in which the TSP is an important
problem. There have been various theoretical studies
on the characteristics of the algorithms and various
pheromone update rules have been developed. For the
two most popular ACO algorithms – ACS and MMAS–,
we have analyzed and discussed the variation tendency
of the pheromone intensity and the edge quality with
respect to the length of the solution constructed by an
ant traversing this edge.

The key contribution of this paper is that, unlike the
main stream of thought in the ACO literature, we have
showed that the length of a solution does not reflect
exactly the quality of a particular edge belonging to the
solution, but it is only used for relatively evaluating
whether the edge is good or bad in the process of
reinforcement learning. Hence, the determination of the
upper and lower bounds on the pheromone intensity
does not need to depend on the quality function.
Instead, it should only be dependent on the search
strategy– intensification or diversification– which is
then reflected by the ratio of the upper bound over the
lower bound. This strategy simplifies the implementa-
tion of the algorithm, because we do not need to know
the absolute values of these bounds.
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Based on the above observation, we have proposed
two new algorithms SMMAS and 3-LAS. These algo-
rithms not only can be easily implemented but also
provide better performance, as compared to MMAS.
The performance was evaluated by numerical simula-
tion using 12 benchmark datasets.

The scaling problem has been investigated thor-
oughly in [19, 20]. Blum and Dorigo [19] discussed a
hyper cube frame work to limit the pheromone values
between 0 and 1. This normalization is trivial while we
think that it can be any interval [τmin, τmax] under the
condition that the ratio τmax/τmin remains the same.
Birattari et al. [20] showed that the ACO algorithm
scaling, in particular ACS and MMAS, is invariant,
under the condition that the performance index is
proportional to any monotonically increasing function;
this is because the pheromone trail updating does not
depend on its value. Therefore, the invariance is not
of any influence to be considered. Recently, the invari-
ance discussed in the work of Zhang and Feng [21]
is also applied to SMMAS and 3-LAS. However, their
algorithms do not have the advantages of ours that have
been discussed previously. All these points consolidate
our point of view as well as reconfirm the superiority
of our proposed algorithms.

Finally, our proposed algorithms are specially useful
for new problems, other than the TSP, when experi-
mental studies often need to be carried out carefully in
determining a suitable model for the quality function
and predefining the upper and lower bounds on the
pheromone intensity. In contributing to this perspective,
we have successfully applied the proposed algorithms
to the haplotype inference problem in bioinformat-
ics [22], as an example.

Appendix

Proof of Proposition 1

Assertion 1: For all ε > 0, we need to prove that

lim
t→∞

P(|τij(t)− τ1| > ε) = 0.

The local update rule in (4) can be rewritten as follows:

τij ← ρτij + (1− ρ)τ1 = τ1 + ρ(τij − τ1).

If, from the iteration t0 to iteration t, the pheromone
intensity on edge eij is locally updated k times then

τij(t) = τ1 + ρk[τij(t0)− τ1].

Hence, there exists a large enough k0 such that for all
k > k0 we have:

|τij(t)− τ1| = |ρk[τij(t0)− τ1]| ≤ ε.

Since

lim
t→∞

P(|τij(t)− τ1| > ε) = lim
t→∞

P(k ≤ k0),

we need to prove that

lim
t→∞

P(k ≤ k0) = 0.

Indeed, let Pij(r) be the probability that the pheromone
intensity on edge eij is locally updated by ant r at each
iteration. Similar to [11], we then have the following
statement:

1 > Pij(r) ≥ p0 > 0.

In other words, if we let P¬ij(r) be the probability that
the pheromone intensity on eij is not locally updated
by ant r at each iteration, then P¬ij(r) satisfies the
following:

0 < P¬ij(r) ≤ 1− p0 < 1. (A.1)

Assume that t = t0 + q. Then for iterations from t0 to
t, it can be seen that edge eij is locally updated by mq
ants in a random manner where the probability of not
updating satisfies (A.1) under any condition. By doing
an analysis similar to the Bernoulli trial, we have

P(k ≤ k0) =
k0

∑
i=1

Ci
mq(1− p0)

mq−i (A.2)

Therefore,

lim
t→∞

P(k ≤ k0) ≤ lim
q→∞

k0

∑
i=1

Ci
mq(1− p0)

mq−i = 0.

We remark that one can use Poisson distribution to
estimate the probability of edge updated i times to have
an estimate better than (A.2).

Assertion 2: With t = t0 + q, we have:

τmin ≤ τij(t)
= max{ρqτij(t0), τmin}
≤ max{ρqL−1

opt, τmin}

for all q such that

q ≥
ln(τmin/Lopt)

ln(ρ)
.
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