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Abstract– One of depth cameras such as the Microsoft Kinect is much cheaper than conventional 3D scanning devices, thus
it can be acquired for everyday users easily. However, the depth data captured by Kinect over a certain distance is of low
quality. In this work, we implement a set of algorithms allowing users to capture 3D surfaces by using the handheld Kinect.
As a classic alignment algorithm such as the Iterative Closest Point (ICP) does not show efficacy in aligning point clouds
that have limited overlapped regions, another coarse alignment using the Sample Consensus Initial Alignment (SAC-IA)
is incorporated in to the registration process in order to ameliorate 3D point clouds’ fitness. Two robust reconstruction
methods namely the Alpha Shapes and the Grid Projection are also implemented to reconstruct 3D surface from registered
point clouds. The experimental results have shown the efficiency and applicability of our blueprint. The constructed system
obtains acceptable results in a few minutes with a low price device, thus it may practically be an useful approach for avatar
generations or online shoppings.
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1 Introduction

Three-dimensional reconstructions of small individual
objects has been researched over the last few decades
and applied into quality assurance, games, facial repre-
sentation, design, etc. Existing 3D scanning technology
is often based on specialized complex sensors, such as
structured light camera. Despite high quality output,
they are expensive and require expert knowledge for
operations, which is unapt for general users. On the
other hand, if handy and cheap 3D scanners were more
amenable, 3D shape models could become widely used.

Depth cameras such as the Microsoft Kinect - a
compact, low-price, and easy-to-use video camera, have
recently attracted much attention. Compared with con-
ventional 3D scanners, they are able to capture depth
and image data at video rate and have little considera-
tion of the light and texture condition.

In this work, we use a 3D object scanning approach
that can be used to obtain several viewpoints of models
visualized as point clouds (sets of point in 3D space)
acquired from a Kinect such that those point clouds
must partially overlap others next to them. Users ac-
quire point clouds by freely moving the camera around
an object. After that, the point clouds are registered into
a single complete model. Then it is fed into surface
reconstruction algorithms to create 3D mesh. The al-
gorithms are parts of the Point Cloud Library (PCL),
an open standalone project for point cloud processing.
This whole process is straightforward and user-friendly.

With the cost of $150, Kinect is much cheaper than other
3D scanners.

The biggest challenge when realizing this process
into practice is the matching level between different
clouds. Moreover, the obtained raw data are not entirely
stable due to occlusion and Kinect limited sensing.
Another problem is the processing time, in which most
reconstruction algorithms are greedy, thus our group
aims to reduce it by implementing General-purpose
computing on Graphics Processing Unit to speed up
the whole process, which is divided into parallel tasks
to be executed on GPU. The main contributions of this
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1 Introduction

Three-dimensional reconstructions of small individual
objects has been researched over the last few decades
and applied into quality assurance, games, facial repre-
sentation, design, etc. Existing 3D scanning technology
is often based on specialized complex sensors, such as
structured light camera. Despite high quality output,
they are expensive and require expert knowledge for
operations, which is unapt for general users. On the
other hand, if handy and cheap 3D scanners were more
amenable, 3D shape models could become widely used.

Depth cameras such as the Microsoft Kinect - a
compact, low-price, and easy-to-use video camera, have
recently attracted much attention. Compared with con-
ventional 3D scanners, they are able to capture depth
and image data at video rate and have little considera-
tion of the light and texture condition.

In this work, we use a 3D object scanning approach
that can be used to obtain several viewpoints of models
visualized as point clouds (sets of point in 3D space)
acquired from a Kinect such that those point clouds
must partially overlap others next to them. Users ac-
quire point clouds by freely moving the camera around
an object. After that, the point clouds are registered into
a single complete model. Then it is fed into surface
reconstruction algorithms to create 3D mesh. The al-
gorithms are parts of the Point Cloud Library (PCL),
an open standalone project for point cloud processing.

This whole process is straightforward and user-friendly.
With the Kinect cost of $150, it is much cheaper than
other 3D scanners.

The biggest challenge when realizing this process
into practice is the matching level between different
clouds. Moreover, the obtained raw data are not entirely
stable due to occlusion and Kinect limited sensing.
Another problem is the processing time, in which most
reconstruction algorithms are greedy, thus our group
aims to reduce it by implementing General-purpose
computing on Graphics Processing Unit to speed up
the whole process, which is divided into parallel tasks
to be executed on GPU.

Figure 1. A point cloud captured from Kinect

The main contributions of this work can be summa-
rized as follows,

1) Implementation of a registration method compris-
ing coarse alignment and fine alignment,

Figure 1. A point cloud captured from Kinect

work can be summarized as follows:
1) Implementation of a registration method compris-

ing coarse alignment and fine alignment,
2) Implementation of optimal methods for surface

reconstruction,
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3) Parallel processing on GPU to improve timing
(computational cost),

4) WebGL visualization of 3D point cloud over web-
browsers without requiring third-party plug-in at
runtime.

In most 3D processing programs, ICP is the solely
implemented registration method. However, it is sus-
ceptible to local minima and generally leads to diver-
gence when overlapped regions of two registered point
cloud are limited. Thus, in this work, we use ICP as fine
alignment after coarse alignment (RANSAC algorithm)
for a fast execution of the algorithm.

2 Related Works

The project Kinect-Fusion [1] displays impressive real
time 3D reconstruction done at high frame rate and
consists of triangle mesh generated in realtime provid-
ing high detail as this mesh is constantly refined with
new capture. This project shows us a low-cost handheld
scanning, and geometry-aware augmented reality and
physics-based interactions. The author detailed a novel
GPU pipeline that achieves 3D tracking, reconstruction,
segmentation, rendering, and interaction, all in real-
time using only a commodity camera and graphics
hardware. This work using the Iterative Closest Point
(ICP) algorithm for aligning the sequential frames and
then apply many reconstruction method to create a
rendered view of 3D scene.

The Intel research [2] did a sophisticated reconstruc-
tion system using Kinect in 2010. It features advanced
large-scale reconstruction techniques like loop-closure,
a global error-minimization technique beyond the scope
of this project.

Nicolas Burrus did his own take on such a system
inspired by Intel in his RGB-Demo [3], released in 2011.
Its GPU-optimized registration was also released.

3 Kinect Sensor and Point Cloud
Acquisition

The Kinect consists of an IR camera, an RGB camera,
and an IR projector that casts a fixed speckle pattern [4].
Conversion of the pattern seen by the IR camera to a
depth map takes place on the device, and depth map
can be retrieved via OpenNI library. This depth data is
processed in PCL I/O module, creating 3D clouds and
additional color components.

The acquired point clouds from Kinect confront sev-
eral 3D perception challenges: massive amount of data
which can be up to 640× 480 points, occlusions from
peripheral objects that make up large parts of the
clouds, irregular density and noise.

4 Algorithms

The entire 3D object reconstruction embraces two ma-
jor phases: the registration phase includes filtering,

segmentation, features estimation, registration; the re-
maining filtering and surface processing make up the
reconstruction phase (Figure 2).

Figure 2. Workflow of the entire process

4.1 Filtering
4.1.1 Downsampling: As the number of points in a

raw point cloud is relatively big (640 × 480 points),
the later processes will be slowed down. Since we are
working with 3D data, voxelgrid filtering will be used.
Voxel grid generation is used to divide 3D space into
small 3D cubes. If the number of points inside a cube
of specific dimension exceeds a certain threshold then
the whole cube will be reduced to a single point at
the points’ centroid. There are many threshold will
be shown in the following algorithms in the remain
of this report. These parameters are chosen based on
experimented method rather than a theoretical ones.
For instance, we choose this certain threshold around 1
millimeter. With a smaller value of threshold, the rest
points of input point clouds will be relatively big, and
it does not bring the efficiency for later process.

4.1.2 Passthrough filtering: Acquired point clouds
usually contain main object and surrounding area with
peripheral objects such as floors, walls. . . Our goal is to
eliminate superfluous objects using passthrough filter.
Passthrough filter passes points in a cloud based on
constraints for one particular field of the point type, for
example, z direction, aka. Kinect’s viewpoint. It iterates
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through the entire cloud once and filter non-finite
points and points outside user-specified interval [z0, z1].

Apart from these filters, a filtering method called sta-
tistical outlier removal is also used after the registration
process.

4.2 Segmentation and Clustering
A point cloud is processed with planar segmenta-

tion to suppress the floor. Planar segmentation uses
RANdom SAmple Consensus (RANSAC) algorithm [5]
to estimate parameters of the planar model from the
dataset.

Inputs of RANSAC are 3D point cloud P, tolerance
threshold of distance dt between the chosen plane and
other points, Ω f - maximum probable number of points
belonging to the same plane, minimum probability α of
finding at least one good set of observations in N trials.

The algorithm uses the following steps:
– Randomly select three non-collinear unique points
{pi, pj, pk} from P,

– Compute the model coefficients from the three
points (ax + by + cz + d = 0),

– Compute the distances from all p ∈ P to the plane
model ax + by + cz + d = 0,

– Count the number of points p? ∈ P whose distance
d to the plane model belongs to [0, |dt|].

Every set of points p? is stored, and the above steps are
repeated for k iterations, where k could be estimated
using

k =
log(1− α)

log(1− (1− ε)s)
(1)

in which, ε is the probability of picking a sample that
produces a bad estimate (i.e. outlier), s is the number
of chosen points to estimate the model parameters,
evaluating the ratio between Ω f and the total points
Ω in the cloud.

In this section, the tolerance threshold is chosen
about a few centimeters. A smaller threshold will make
an increase in time processing, and a lager one, other-
wise, will reduce the precision of the algorithm.

Clustering
In Figure 3, the floor has been subtracted from the

original cloud P. However, some residual fragments
still remain in the result P?, as they do not belong to the
plane, or the distance threshold dt was set too tightly.
To eliminate these fragments, the clustering process
follows the segmentation process.

A cluster Ci = {pi|pi ∈ P} is distinctive from the
cluster Cj = {pj|pj ∈ P} if min |pi − pj| = dth (the
value of dth is about a few centimeters). The algorithmic
steps [6] separating a point cloud into different clusters
are as follows,

– Create a kd-tree representation for the input
cloud P

– Set up an empty list of clusters C, and a queue of
the points that need to be checked Q,

– Then for every pi ∈ P, perform the following steps:
+ Add pi to the current queue Q,
+ For every point pi ∈ Q do:

- Search for the set Pk
i of neighboring points

of pi in a sphere with radius r < dth,
- For every neighbor pk

i ∈ Pk
i , check if the

point has already been processed, and if not
add it to Q,

+ When the list of all points in Q has been
processed, add Q to the list of clusters C, and
reset Q to an empty list,

– The algorithm terminates when all points pi ∈ P
have been processed and are now part of the list
of point clusters C.

Figure 3. A point cloud before segmentation, after segmentation
and after clustering

4.3 Feature Descriptors Estimation

Point clouds alignment requires correspondences be-
tween two partially overlapped pairs of point clouds.
The features descriptor of the point clouds need to
be extracted. Surface normals and curvature are such
correspondences.

Normals estimation
The simplest method is based on the first order 3D

plane fitting. The problem of determining the normal
to a point on a surface is approximated by estimating
the normal of a plane tangent to that surface, which
becomes a least-square plane fitting estimation in [7].
The plane is represented as a point x and a normal
vector ~n, and the distance from a point pi ∈ Pk

i to the
plane is di = (pi − x)~n. The values of x and ~n are
computed in a least-square sense so that di = 0. By
taking:

x = p =
1
k

k

∑
i=1

pi (2)

as the centroid of Pk, the solution for ~n = (nx, ny, nz)
is given by analyzing eigenvalues and eigenvectors of
the covariance matrix C of Pk:

C =
1
k

k

∑
i=1

ξi(pi− p)(pi− p)T , C · vj = λj · vj, j ∈ {0, 1, 2}

(3)
The term ξi represents a possible weight for pi, and

usually equals 1. C is symmetric and positive semi-
definite, and its eigenvalues are real numbers λj ∈ R.
The eigenvectors ~vj form an orthogonal frame, corre-
sponding to the principal components of Pk.

For the sign of ~n, Kinect viewpoint vp is utilized. To
orient all normals ~n consistently towards vp, we need
~nt(vp − vi) > 0.
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Figure 4. Normal estimation of a point cloud

The output surface curvature is estimated as a re-
lationship between the eigenvalues of the covariances
matrix as:

σ =
λ0

λ0 + λ1 + λ2
(4)

Fast Point Feature Histogram (FPFH)
Surface normal and curvature cannot capture too

much detail as they approximate the geometry of with
only a few neighbors, resulting in similarities in feature
values, reducing informative characteristics. To better
feature descriptors, PFH - a powerful features extrac-
tion method, is used to group points on the same
surface to a separate class.

For a source point ps and a target point pt, the
Darboux frame is uvw (Figure 5):

u = ns

v = u pt−ps
|pt−ps |

w = uv
(5)

Radu Rusu et al [8] suggested using uvw frame to

Figure 5. Representation of the Darboux frame and the angular PFH
features for a pair of points ps and pt with their associated normals
ns and nt

calculate a set of angular features between the two
normals ns and nt:

α = vnt

φ = u pt−ps
d

θ = arctan(wnt, unt)
(6)

where d = |ps − pt| is the Euclidean distance between
the two points ps and pt. The PFH quadruplet 〈α, φ, θ, d〉
is computed for each pair of two points in the Pk

neighborhood.
To create the final PFH representation for the query

point pi, all quadruplets is binned into a histogram. The

binning process divides each feature’s value range into
b subdivisions, and counts the number of occurrences
in each subinterval.

In figure 5, pt is one of the k-nearest neighbors of they
query point ps. The number of quadruplets formed in a
neighborhood Pk is C2

k = 1
2 k(k− 1), with computational

complexity of O(k2). For a point cloud dataset P with
n points, the complexity is O(nk2).

To accelerate PFH, it simplified version FPFH [8]
is suggested to reduce computational complexity
to O(nk):

– For each pq, Simplified PFH (SPFH) triple 〈α, φ, θ〉
between pq and its neighbors are computed as
in (5)

– For each point its k neighbors are re-determined,
and neighboring SPFH values are used to weight
FPFH of pq as:

FPFH(pq) = SPFH(pq) +
1
k

k

∑
i=1

1
ωk
· FPFH(pk) (7)

where the weight ωk represents a distance between the
query point pq and a neighbor point pq.

Figure 6. Fast Point Feature Histogram of a point cloud

4.4 Registration
Registration is to align point clouds into one com-

plete object using estimated FPFH descriptors or cor-
respondences. ICP is the solely implemented regis-
tration method but it has some disadvantages when
overlapped regions of two registered point cloud are
limited. Thus, ICP will be used as fine alignment after
coarse alignment gets executed.

Coarse alignment
The algorithm searches for a set of corresponding

points in the target point cloud for the persistent FPFH
features of the source. Coarse alignment using SAC-
IA [6] – [9] is based on a sample consensus formu-
lation that samples large numbers of correspondence
candidates and rank each of them quickly:

– Sample n points di from source: |di − dj| ≥ min d
– For each di:

+ Find k closest matches in features
+ Choose one to be correspondence mi

– Estimation transformation T = (R, t)
– Filter inlier pairs with (dT

i −mi)
2 < ε

– Loop N times and pick T having the most inliers.

Fine alignment
If Q denotes a point cloud which is to be registered

and moved to a static point cloud P, ICP [10] goes as
following:



T. Le-Tien et al.: 3D Reconstruction using Kinect Sensor and Parallel Processing on Graphics Processing Unit 63

Figure 7. Comparison between point clouds after coarse and fine
alignment. The RHS merged point clouds outweigh the LHS one in
registration quality

Figure 8. Illustration of pairwise registration

– For all points q ∈ Q, find the nearest neighbor p ∈
P.

– Find an orthogonal rotation R and a translation t
minimizing the squared distances between neigh-
boring pairs:

min
R,t

∑
i
‖(Rqi + t)− pi‖2 (8)

– Apply the transformation to Q.
This process is repeated over multiple runs until one
termination criterion is reached. A means of ICP judg-
ment is to use the Euclidian fitness score from two sets
of correspondence distances:

Fitness score = ∑
i
(Rdi + t−mi)

2 (9)

To recap previous sections, figure 8 illustrates pair-
wise registration to form the complete model from
various clouds.

4.5 Moving Least Squares Smoothing and
Upsampling

In the merged cloud after pairwise registration (Fig-
ure 9), the density of points in overlapped areas is
nearly two times higher than normal. Besides, there
possibly are doubled regions. This leads to the use of
Moving Least Squares [11] for smoothing and upsam-
pling (Figure 10).

The first step is to compute a set of points Q which
are to be fitted to the surface. If only surface recon-
struction is required, initial guess for Q can be the final

Figure 9. Four input point clouds corresponding to four viewpoints
and the pairwise-registered point cloud (bottom)

Figure 10. The cloud surface before and after MLS smoothing

cloud. For resampling, a set of equidistant grid points
is generated in the proximity of the input cloud (the
registered cloud) such that holes are covered. Holes-
filling strategy [12] fills every hole that is smaller than
a given radius. In the second fitting step, for each
point q ∈ Q, h = µq + kσd, i = 1, k, the coefficients are
computed for its k-nearest neighbors in P:

wi = exp
(
−‖q− pi‖2

h

)
(10)

The approximate surface is estimated via bivariate
polynomial fu,v = σi,juivj from the original cloud
surface nu,v:

nu,v =
x

∑
j=1

cj f j
u,v = fT

u,vc (11)

The coefficients cj are computed via minimizing error
function:

E(s) =
k

∑
i=1

wi

(
fT

u,vc− nu,v

)2
(12)

Finally, pi ∈ Pf are projected to the approximated
surface.
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Figure 11. The alpha shapes of a seven-point set for different values
of alpha. From left to right, top to bottom, alpha increases from zero
to infinity

Figure 12. The alpha shapes of a point set

4.6 Surface reconstruction

Two main categories of surface reconstruction are
mesh construction and implicit function.

Alpha shapes [13] belongs to mesh construction meth-
ods that preserve cloud surface and construct a poly-
gon mesh linking the vertices. Alpha-neighborhood - a
union of balls of radius α centered at each data point
is formed (the circled region). The alpha-neighborhood
is partitioned into cells by taking the intersection with
the Voronoi diagram (the dashed lines). The alpha
shape is the geometric dual of the partitioned alpha
neighborhood (Figure 11). Alpha shapes simplifies to
the point set when alpha tends to zero, converges to
the convex hull as alpha tends to infinity (Figure 12).
The reconstructed surface of the merged point cloud in
figure 9 is display in figure 13.

Figure 13. The surface formed by alpha shapes method

Grid Projection [14] – [15] belongs to implicit function
methods that generate new vertices or polygon meshes

Figure 14. Grid projection approximates the extremal surface (blue
curve) and constructs a simplicial surface (green curve) by examining
orientation and magnitude of vectors (orange arrows) at two end
points of each grid edge

Figure 15. The surface formed by grid projection method

to as it fit the cloud surface into a smoother surface
algorithm. Points are first partitioned into voxels, and
a vector field is constructed, where the vectors at any
given point are directed at the nearest point. A surface
is determined by examining where vectors with oppo-
site directions point towards. Edges in the voxels that
this surface is reconstructed from are determined, and
padding cells are also added. The center points of each
voxel are then projected based on the edge intersec-
tions, and the surface is reconstructed by connecting
these center points.

Many methods applied to 3D models imply a change
of topology and geometrical distortion, which justifies
the choice of Hausdorff metric to perform measure-
ments over 3D space.

The distance between a point p ∈ S and a surface
S′ is:

d(p, S′) = min
p′∈S′
‖p− p′‖2 (13)

with ‖ · ‖2 is Euclidian norm. Hausdorff distance [16] is
the distance from each point in surface S to its k-nearest
points in surface S′:

d(S, S′) = max
p∈S

d(p, S′) (14)

5 Results

To judge registration quality, fitness score is used. A
fitness score is considered good if it is below 10−4. It
also depends on the percentage of overlapped area over
total area of a cloud. In table , the fitness score drops
1.3 to 30 times when two-stage registration is used.
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Table I
Registration Fitness Score

Model ICP SAC-IA & ICP
Bear (small overlap) 0.0209211 0.00970484
Bear (large ovl.) 0.0448061 0.00150492
Body (small ovl.) 0.0304748 0.00125251
Body (large ovl.) 0.00126414 0.000950584
Robot 0.00612491 0.000639445
Dinosaur 0.00637339 0.000637991
Shark 0.00148293 0.000386612
Minnie mouse 0.00173132 2.24E-04
Triceratops 0.00457102 4.43E-05

Figure 16. Fitness score comparison between ICP and SAC-IA &
ICP

Figure 17. Four input point clouds of a robot model captured from
Kinect

The fitness score get more improved when overlapped
region of two consecutive point clouds gets large.

To assess surface quality, reconstructed surface
should be compared to real surface, which is inappli-
cable. However, two1 largely overlapped point clouds
can be finely registered into a template surface using
ICP integrated in popular 3D processing programs. The
Hausdorff distance is used to judge the reconstructed
surface to the template.

In figure 19, mean Hausdorff distance between alpha
shapes surface and real cloud surface is 1.46mm, while
it is 1.87mm in case grid projection. Surfaces generated
by alpha shapes are better than ones generated by
grid projection. In term of timing, alpha shapes takes
15 seconds whilst grid projection requires up to 270
seconds for a typical 50, 000-point cloud. Processing
time of all processing tasks is visualized in figure 20
in case four input clouds are used. Registration cost is
highest in time among all tasks. GPU implementation

Figure 18. The pairwise registered cloud (left) of the four input
clouds in figure 17, alpha shapes surface (middle) and grid projection
surface

Figure 19. Hausdorff distance between alpha shapes surface (left,
mean 1.46mm) and grid projection surface to real surface (right, mean
distance 1.87mm)

Figure 20. The pairwise registered cloud (left) of the four input
clouds in figure 17, alpha shapes surface (middle) and grid projection
surface

Figure 21. Registration time cost in second in CPU and GPU

of algorithms using nVidia GPU having modern CUDA
architecture will exploit parallel threads to reduce time
cost for the whole process.

Figure 21 exhibits the effectiveness in processing time
cost for the heaviest task - registration, in which tested
models consist of 20, 000 - 50, 000 points. In addition to
a well-known bunny model, we acquired point clouds,
using Kinect, from real objects such as three different
body samples. The time cost is significantly decreased
when we implement these tasks on GPU.
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Figure 22. Four input clouds of a body sample and the pairwise registered model (right)

Figure 23. Alpha shapes surfaces and error plot (two lefts, mean distance 1.46mm) vs. grid projection and error plot (two rights, mean distance
1.73mm)

Figure 24. Three among eleven input clouds and pairwise registered cloud (right) of the bunny model

Figure 25. Alpha shapes surfaces and error plot (two lefts, mean distance 1.46mm) vs. grid projection and error plot (two rights, mean distance
1.73mm)



T. Le-Tien et al.: 3D Reconstruction using Kinect Sensor and Parallel Processing on Graphics Processing Unit 67

6 Conclusion

3D object scanning has so far had a limited range
of applications due to expense, complexity, and space
requirements. Here an acceptable accuracy reconstruc-
tion with an inexpensive commodity sensor is shown
viable. We have demonstrated the feasibility of an
object scanner that could work freely by combining
point cloud datasets into a finely registered model.
The key idea is to use dual alignment including SAC-
IA and ICP algorithm to improve fitness score. Beside
formidable alignment quality, two surface reconstruc-
tion algorithms were also implemented and proved to
exhibit high quality mesh.

Future work should address the details of the surface
of complicated objects. We believe that the implemented
algorithm should work better with point clouds from
sophisticated cameras. Optimization speed can be im-
proved to make the work more interactive.
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