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Abstract– In a time-varying transmission channel, the received signals are subject to frequency shifts due to the Doppler
effect. The Doppler frequency is dependent on the carrier frequency and channel variation rate. In a fixed wireless
channel, the channel variations are caused by scatterer motion. In this paper, we investigate analytically the Doppler
effects generated by scatterer motion under different scatterer velocity distributions using the ring-of-scatterers geometric
model. The proposed model considers Doppler frequency components caused by scatterer mobility to both received and
reflected signals at each scatterer, and therefore is called the double Doppler model. The analytical curves are compared
and statistically tested with several measurement results published in the literature. At low scatterer speeds, e.g., generated
by moving foliage, the exponential velocity distribution is an appropriate model to describe the time-varying nature of
the fixed wireless channels. The curve fitting results also show that our analytical model better approaches the empirical
curves than the single Doppler model does. However, further investigation is still needed to find a suitable scatterer velocity
distribution that closely describes the double Doppler effect in fast-variation fixed wireless channels, e.g., caused by passing
vehicles.
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1 Introduction

In wireless communications, the Doppler phenomenon
is caused by the varying nature of the propagation
environment [1, 2]. The Doppler shift is mostly as-
sumed to be generated by subscriber motion. A receiver
traveling at a speed of v m/s will cause a Doppler
shift ν = fcv

vp
cos α [2] to carrier frequency fc, where

vp is the signal propagation velocity, and α is the
angle between the receiver traveling direction and the
receiver-transmitter axis. In a NLOS environment, if the
directions of arrival at the subscriber are uniformly dis-
tributed over [0, 2π) and if the multipath components
arrive at the same time with equal power, the Doppler
power spectral density, due to subscriber motion, fol-
lows Clarke’s famous model and has the well-known
U-shape [1, 3–5].

While Clarke’s model is a popular tool to describe
the Doppler phenomenon caused by subscriber mo-
bility, we cannot use this model for fixed wireless
channels. For fixed wireless communications appli-
cations, e.g., the Multichannel Multipoint Distribution
Service (MMDS) system, even if the subscriber and
the transmitter are stationary, the received signals still
experience Doppler shifts. This phenomenon was stud-
ied empirically in [6–8] but no analytic models were
presented to support the measurement results until the
publication of [9] and [10]. In [9], the problem was
studied analytically and a channel model for the indoor

channel was proposed. In this model, the scatterers are
assumed either stationary or mobile at a fixed velocity
or at uniformly distributed velocities. While this model
is suitable for indoor environments, where the scatter-
ers are either stationary, e.g., furnitures and walls, or
slowly mobile at similar velocities, e.g., pedestrians, it
is invalid for outdoor channels, where mobile scatterers
have different velocities.

Using a different approach, Roy et al. [10], as-
sumed that the subscribers are moving at a constant
speed while the scatterers are moving at random ve-
locities with different velocity distributions. The clas-
sic ring-of-scatterer geometric model was considered.
The Doppler shift of a NLOS multipath component,
reflected from a scatterer, is the summation of two
Doppler frequencies. The first component is caused by
the scatterer mobility with respect to the transmitter
and the second one is due to the receiver mobility
relative to the scatterer. To validate the model, the
measured Doppler power spectra presented in [7] were
reproduced and fitted to the analytical model. The
model validation shows that the scatterer velocity ran-
domness is successfully addressed and incorporated in
the model of Roy. However, the Doppler frequency
component caused by the scatterer mobility with re-
spect to the receiver was not taken into account.

In this paper, we extend the research results pre-
sented in [10] by investigating the double Doppler
phenomenon generated by scatterer mobility itself in
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a fixed wireless channel using the ring-of-scatterers
geometric model. In the proposed model, both Doppler
frequency components, caused by the scatterer mobility
with respect to the transmitter and the receiver to
the received and reflected signals, respectively, at a
scatterer, are addressed and investigated in depth. The
analytical model is studied under different scatterer
velocity distributions, including uniform, Gaussian, ex-
ponential and triangular distributions. The proposed
model is validated through curve fitting and statistical
analysis with empirical curves, reproduced from the
results published in [6–8].

The remainder of the paper is organized as follows.
Section 2 presents the calculation of double Doppler
frequencies caused by scatterer mobility. In Section 3,
the autocorrelation functions and the Doppler power
spectra are derived for the ring-of-scatterer geometric
model under different velocity distributions. Curve
fitting and statistical tests are presented in Section 4.
Section 5 concludes the paper.

2 Doppler Shift Caused by Scatterer

Motion

Consider a fixed wireless propagation channel where
transmitted signals are emitted from the transmitter,
reflected by a scatterer and received at the receiver. As
the scatterer is assumed to be moving with respect to
the transmitter, the signals received at the scatterer from
the transmitter experience a Doppler frequency shift νTS
given by:

νTS = − fc × vSx

vp
cos αTS, (1)

where vSx is the scatterer velocity and αTS is the an-
gle between the scatterer velocity vector, ~vSx, and the
scatterer-transmitter axis.

The signal received at the scatterer is then reflected
to the receiver. The carrier frequency of the reflected
signal is fc + νTS. Due to the motion of the scatterer
with respect to the receiver, the signals reflected from
the scatterer and received at the receiver are affected by
an additional Doppler shift νSR, calculated by:

νSR =
( fc + νTS)× vSx

vp
cos αSR, (2)

where αSR is the angle between the scatterer velocity
vector and the scatterer-receiver axis.

The ratio between the scatterer speed, vSx, and the
signal propagation velocity, vp, is very small, usually
on the order of 10−7. Doppler frequency νTS is on the
order of tens of Hz, and thus negligible compared to
the carrier frequency, fc. (2) is rewritten as follows:

νSR ≈
fc × vSx

vp
cos αSR. (3)

The total Doppler shift caused by the scatterer motion
to the signals received at the receiver is the sum of the
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Figure 1. Geometric scenario of the scattering model [10].

two Doppler components, νTS and νSR, calculated in (1)
and (3), i.e.

νS = νTS + νSR. (4)

The Doppler shift caused by the scatterer motion with
respect to the transmitter, νTS, was discussed and char-
acterized in [10]. The double Doppler components, νTS
and νSR, were analytically investigated in [9] for indoor
channels with mixed stationary and mobile scatterers at
fixed velocities. The empirical Doppler power spectra
caused by scatterer mobility in fixed wireless channels
were presented in [6–8, 11, 12]. In the subsequent
sections, we investigate the double Doppler effects for
the fixed wireless channel with mobile scatterers under
different scatterer velocity distributions.

3 Doppler Power Spectral Density

3.1 Geometry Model

We consider the ring-of-scatterers geometric model
[3, 10] in order to investigate the double Doppler phe-
nomenon. As illustrated in Figure 1, the transmitter-
receiver separation is d. The mobile scatterers are
uniformly distributed on a circle of radius r around
the receiver. In order to guarantee that the attenuation
on each multipath component is independent of path
length, the radius r needs to be small in comparison to
the distance d: r � d. There is no direct component
received at the receiver from the transmitter. The mul-
tipath components are supposed to have equal power
and the multipath excess delay differences are assumed
not greater than the time resolution of the receiver.

The transmitter-receiver axis forms an angle δ0 with
the x axis. The angle between the transmitter-receiver
axis and the transmitter-scatterer axis is denoted δ.
Since the scatterers are uniformly distributed on a cir-
cle, the angle between the transmitter-receiver axis and
the receiver-scatterer axis, α, is uniformly distributed
between 0 and 2π. The transmitter, Tx, and the receiver,
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Rx, are stationary. The scatterers, Sx, are mobile.
The direction γSx of the scatterer velocity vectors is
also uniformly distributed between 0 and 2π. The
double Doppler effect will be investigated under differ-
ent scatterer velocity distributions, including Gaussian,
exponential, uniform and triangular distributions.

3.2 Autocorrelation Function

Following the same reasoning used in [3, 13, 14], the
received carrier from the nth scatterer is given by:

sn(t) = Cn exp j(2π( fc + νn)t + θn), (5)

where Cn is the attenuation; νn is the compound
Doppler shift caused by transmitter, scatterer and re-
ceiver, if any, and θn is the total phase shift. These
parameters are calculated on the transmitter–scatterer–
receiver path.

The received carrier at the receiver at passband is
the summation of reflected signals from all scatterers,
as follows:

s(t) =
N

∑
n=1

Cn exp j(2π( fc + νn)t + θn), (6)

where N is the number of mobile scatterers.
The baseband representation of the received carrier

is:

c(t) =
N

∑
n=1

Cn exp j(2πνnt + θn) (7)

= Tc(t) + jTs(t),

where

Tc(t) =
N

∑
n=1

Cn cos(2πνnt + θn),

Ts(t) =
N

∑
n=1

Cn sin(2πνnt + θn). (8)

The autocorrelation of the received carrier at base-
band is:

R(τ) = 〈c(t)c∗(t− τ)〉 (9)
= 〈(Tc(t) + jTs(t))(Tc(t− τ)− jTs(t− τ))〉 ,

where 〈·〉 is the averaging operator.
Following [14], pp. 77-78, the 〈(Tc(t)Tc(t− τ)〉 term

can be expressed as:

〈(Tc(t)Tc(t− τ)〉 = 〈Ts(t)Ts(t− τ))〉 (10)
〈(Tc(t)Ts(t− τ)〉 = − 〈Ts(t)Tc(t− τ))〉 .

Replacing (10) in (9), the autocorrelation R(τ) is:

R(τ) = 2 〈(Tc(t)Tc(t− τ)〉 − 2j 〈(Tc(t)Ts(t− τ))〉

= 2

[
1
2

E2
0

N

∑
n=1
〈cos(−2πνnτ)〉

−j
1
2

E2
0

N

∑
n=1
〈sin(−2πνnτ)〉

]
(11)

= E2
0

N

∑
n=1

〈
ej2πνnτ

〉
,

where E0 is the signal magnitude, i.e., square root of
the signal power: E2

0 = ∑N
n=1 C2

n.
When N tends towards infinity, the summation in (9)

becomes an integral on the circle of radius r, i.e., on the
continuous variable α from 0 to 2π:

R(τ) =
1

2π
E2

0

∫ 2π

0

〈
ej2πντ

〉
dα. (12)

Replacing the corresponding Doppler components, ν,
into (12), we obtain the autocorrelation function, and
therefore, the Doppler power spectrum1.

3.3 Doppler Spectra Generated by Scatterer Motion

Utilizing the ring-of-scatterers geometric model in
Figure 1, the angles αTS and αSR are derived as:

αTS = δ0 + δ− γSx (13)
αSR = α + δ0 − γSx.

The Doppler frequency caused by scatterer motion is:

νS = νTS + νSR (14)

=
fcvSx

vp
[cos(δ0 + δ− γSx) + cos(α + δ0 − γSx)]

= 2
fcvSx

vp
cos

(
δ + α

2
+ δ0 − γSx

)
cos

(
δ− α

2

)
.

The autocorrelation function of the received carrier
complex envelope is represented in (15). Reducing the
integral on variable γSx gives:

R(τ) = (16)
1

2π
E2

0

∫
vSx

∫ 2π

0
J0

(
4π

fcvSx

vp
cos

(
δ− α

2

)
τ

)
pvSx(vSx)dαdvSx.

Next, the integral on variable α is reduced. One
observes that, as α varies from 0 to 2π, δ−α

2 varies from
0 to π. Applying (6.681.5) in [19], pp. 724 gives:

R(τ) =
∫

vSx

J2
0

(
2π

fcvSx

vp
τ

)
pvSx(vSx)dvSx. (17)

One observes that the autocorrelation, and therefore
the Doppler spectrum, is dependent on the scatterer ve-
locity distribution. If the scatterer velocity is constant,
i.e., vSx = vmax, performing the Fourier transform on
the above autocorrelation function, one obtains:

S(ν) =
1

2πνSmax
G20

22

(
ν2

4ν2
Smax

∣∣∣∣ 1
2 , 1

2
0, 0

)
, (18)

where Gmn
pq

(
x
∣∣∣∣ a1, · · · , an, an+1, · · · , ap

b1, · · · , bm, bm+1, · · · , bq

)
represents

the MeijerG function and νSmax is the maximum

1To reproduce our results, it is important to note that, the au-
tocorrelation functions are calculated manually, using the integrals
found in [15–18], whereas the Doppler spectra are calculated with
the help of the Maple computing software. However, since it cannot
perform the integrals with complex exponentials, we decomposed
the Fourier transforms into two integrals, corresponding to the real
and the imaginary parts. Each integral is calculated separately by
Maple and then, combined to obtain the final results presented in
this section.
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R(τ) =
1

2π
E2

0

∫ 2π

0

〈
exp

[
j2π2

fcvSx

vp
cos

(
δ + α

2
+ δ0 − γSx

)
cos

(
δ− α

2

)
τ

]〉
dα (15)

=
1

2π
E2

0

∫
α

∫
γSx

∫
vSx

exp
[

j4π
fcvSx

vp
cos

(
δ + α

2
+ δ0 − γSx

)
cos

(
δ− α

2

)
τ

]
pγSx(γSx)pvSx(vSx)dαdγSxdvSx

=
1

(2π)2 E2
0

∫
vSx

∫
α

∫
γSx

exp
[

j4π
fcvSx

vp
cos

(
δ + α

2
+ δ0 − γSx

)
cos

(
δ− α

2

)
τ

]
pvSx(vSx)dγSxdαdvSx

Doppler frequency induced by scatterer motion on the
reflected signal, i.e., νSmax = fcvmax

vp
.

In the following Sections, we analytically derive the
autocorrelation functions and the Doppler power spec-
tral densities for uniform, exponential, Gaussian and
triangular scatterer velocity.

3.3.1 Uniform Distribution: The scatterer velocity is
uniformly distributed from 0 to vmax. The probability
density function (pdf) is:

p(vSx) =

{ 1
vmax

, 0 ≤ vSx ≤ vmax,
0, otherwise,

(19)

where µvSx = vmax
2 and σvSx = vmax

2
√

3
are the mean and

standard deviation of the scatterer velocity, respectively.
The autocorrelation function then becomes:

R(τ) =
1

vmax

∫ vmax

0
J2
0

(
2π fc

vp
vSxτ

)
dvSx (20)

= 2F3

(
1
2

,
1
2

; 1, 1,
3
2

;−
(

2π fcvmax

vp
τ

)2
)

= 2F3

(
1
2

,
1
2

; 1, 1,
3
2

;− (2πνSmaxτ)2
)

,

where pFq(a1, · · · , ap; b1, · · · , bq; x) is the generalized
hypergeometric function. The corresponding Doppler
power spectrum is:

S(ν) =
G30

33

(
ν2

4ν2
Smax

∣∣∣∣ 1
2 , 1

2 , 1
0, 0, 0

)
4πνSmax

. (21)

3.3.2 Exponential distribution: The scatterer velocity is
exponentially distributed with mean velocity v0 and the
pdf is:

p(vSx) =

{
1
v0

e−
vSx
v0 , vSx ≥ 0,

0, otherwise,
(22)

where µvSx = v0 and σvSx = v0. The corresponding
autocorrelation function is:

R(τ) =
1
v0

∫ ∞

0
J2
0

(
2π fc

vp
vSxτ

)
e−

vSx
v0 dvSx (23)

=

vpG21
22

(
v2

p

16v2
0π2 f 2

c τ2

∣∣∣∣ 1
2 , 1

2
0, 0

)
4π2v0 fc |τ|

=

G21
22

(
1

16π2ν2
0 τ2

∣∣∣∣ 1
2 , 1

2
0, 0

)
4π2ν0 |τ|

,

where ν0 is the maximum Doppler frequency caused
by the scatterer motion at an average velocity of v0 on

its received signal, i.e., ν0 = fcv0
vp

. Applying the Fourier
transform on the autocorrelation function results in the
following Doppler power spectrum:

S(ν) =
Ko(

|ν|
4ν0

)2

2π2ν0
, (24)

where K0(·) is the zeroth order modified Bessel func-
tion of the second kind.

3.3.3 Gaussian distribution: Since the velocity (mag-
nitude) is always positive or equal to zero, we use a
half-Gaussian distribution for the calculation of the au-
tocorrelation function. In order to keep the cumulative
distribution function (cdf) at ∞ equal to 1, a factor of 2
is introduced in the original distribution, thus yielding
the scatterer velocity pdf

p(vSx) =

 2√
2πσ

e−
v2

Sx
σ2 , vSx ≥ 0,

0, otherwise,
(25)

where µvSx =
√

2
π σ, σvSx =

√
π−2

π σ and σ2 is the vari-
ance parameter of the original Gaussian distribution.
The autocorrelation function is computed as:

R(τ) =
2√
2πσ

∫ ∞

0
J2
0

(
2π fc

vp
vSxτ

)
e−

v2
Sx

2σ2 dvSx

= 2F2

(
1
2

,
1
2

; 1, 1;−8π2 f 2
c

v2
p

σ2τ2

)

= 2F2

(
1
2

,
1
2

; 1, 1;−8π2

λ2
c

σ2τ2
)

, (26)

with λc being the carrier wavelength. The correspond-
ing Doppler power spectrum is:

S(ν) =

√
2λcG30

23

(
λ2

c ν2

8σ2

∣∣∣∣ 1
2 , 1

2
0, 0, 0

)
4π
√

πσ
. (27)

3.3.4 Triangular distribution: Here, the scatterer veloc-
ity distribution is given by:

p(vSx) =

{
2

vmax
− 2vSx

v2
max

, 0 ≤ vSx ≤ vmax,
0, otherwise,

(28)
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whith µvSx = vmax
3 and σvSx = vmax

3
√

2
. In this case, the

autocorrelation function is given by:

R(τ) =
∫ vmax

0
J2
0

(
2π fc

vp
vSxτ

)(
2

vmax
− 2vSx

v2
max

)
dvSx

= 22F3

(
1
2

,
1
2

; 1, 1,
3
2

;−4π2 f 2
c v2

max
v2

p
τ2

)

− J0

(
2π fcvmax

vp
τ

)2
− J1

(
2π fcvmax

vp
τ

)2

= 22F3

(
1
2

,
1
2

; 1, 1,
3
2

;−4π2ν2
Smaxτ2

)
− J0 (2πνSmaxτ)2 − J1 (2πνSmaxτ)2 . (29)

Applying the Fourier transform on the autocorrela-
tion function in (29), the Doppler power spectrum is
obtained as

S(ν) =
G30

33

(
ν2

4ν2
Smax

∣∣∣∣ 1
2 , 1

2 , 1
0, 0, 0

)
2πνSmax

−
G20

22

(
ν2

4ν2
Smax

∣∣∣∣ 1
2 , 1

2
0, 0

)
2πνSmax

−
G21

33

(
ν2

4ν2
Smax

∣∣∣∣ − 1
2 , 1

2 , 3
2

0, 0, 1
2

)
2πνSmax

. (30)

Figures 2(a) and 2(b) show the autocorrelation func-
tions and the Doppler power spectra, respectively, for
the above four scatterer velocity distributions: uniform,
exponential, half-Gaussian and triangular distributions.
In order to make the autocorrelation functions and the
Doppler power spectra under the four scatterer velocity
distributions comparable, the distribution parameters
are selected so that the mean scatterer velocities, µvSx ,
are equal to 1 m/s. The maximum scatterer velocity,
vmax, is set to 2 m/s for the uniform distribution and
to 3 m/s for the triangular distribution. The mean
scatterer velocity for the exponential distribution, v0, is
1 m/s. The variance parameter of the half-Gaussian
distribution, σ2, is set to π

2 , leading to an average
scatterer velocity of 1 m/s. The carrier frequency, fc,
is selected to be 300 MHz.

In Figure 2(b), it is observed that the the Doppler
power spectrum is bounded under the uniform and
triangular distributions but not under the exponential
and half-Gaussian distributions. In this figure, the
Doppler frequency is depicted between -7 and 7 Hz.
If the Doppler frequency range is increased, then the
Doppler power spectrum continues to expand under
the exponential and Gaussian distributions whereas
they do not change under the uniform and rectangular
distributions. This is because the scatterer velocity
is bounded by the maximum velocity, vmax, under
the uniform and triangular distributions while it is
not bounded under the exponential and half-Gaussian
distributions.

(a)

(b)

Figure 2. Autocorrelation function (a) and Doppler power spectrum
(b) when the receiver and the transmitter are fixed, the scatterer
velocity has different distributions.

4 Model Validation

The proposed model is validated through curve-fitting
and statistical testing of the empirical Doppler power
spectrum curves reproduced from [6–8], and our ana-
lytical curves. The analytical curves are also compared
with those from [10] in order to show the improvement
of the double Doppler model comparing with the single
Doppler model.

In Figure 3, the empirical curve-fitting obtained with
our model are compared to those presented in [10].
The empirical curves, measured at a carrier frequency
of 2.5 GHz, were extracted and reproduced from [7,
Figure 7]. The difference between the two models is
the introduction in our model of the double Doppler
components, caused by scatterer motion with respect to
the transmitter and the receiver to the reflected signals.
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(a)

(b)

Figure 3. Performance comparison with the results presented in
[10, Figures 10 and 11]: curve-fitting to the empirical Doppler power
spectrum at (a) moderate and (b) high Doppler spread.

Figure 3(a) shows a Doppler power spectrum measured
in a channel with moderate Doppler spread, while
Figure 3(b) shows a Doppler power spectrum measured
in an environment with high Doppler spread. The
analytical curves are produced using an exponential
scatterer velocity distribution. This distribution is se-
lected because it provides the best curve fitting, among
the four scatterer velocity distributions aforementioned,
with the empirical curves. Our model tends to spread
widely and thus better follow the measurement curves,
whereas the model of Roy tends to descend more
steeply and to deviate from the measurement curves.
The Chi-square test results show that our model out-
performs the model of Roy in both moderate and high
Doppler spread channels.

Figure 4 compares the proposed analytical model
curves with the empirical curves reproduced from [6,
Figure 4]. Figure 4(a) shows the Doppler power spectra

(a)

(b)

Figure 4. Curve fitting with the empirical results (extracted from
[6, Figure 4]) generated by (a) foliage and by (b) passing vehicles.

generated by foliage movements, while Figure 4(b) rep-
resents the Doppler power spectra caused by passing
vehicles, both in a fixed wireless channel at a carrier
frequency of 29.5 GHz. The analytical curves for the
model presented in [10] and our model are plotted
under an exponential scatterer velocity distribution. It
shows that our model outperforms the other model
in both cases. However, while they follow relatively
closely the Doppler power spectrum caused by fo-
liage motion, neither of the two models follow the
high Doppler shifts in the case of passing vehicles.
Intuitively, the foliage fluctuates randomly in every
direction due to the wind. Its velocity is slow and its
average is close to zero. The exponential distribution
also emphasizes the low speeds and therefore better
describes the case of foliage motion than the case of
vehicles moving at high speeds. It is conjectured that a
Laplacian distribution would better describe the vehicle
velocity distribution. Unfortunately, the calculation of
the autocorrelation function and the Doppler power
spectrum under the Laplacian distribution is currently
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Figure 5. Curve fitting with the empirical results presented in [8,
Figure 2].

difficult to handle, and therefore, no analytical results
for the Laplacian scatterer velocity distribution is pre-
sented at this point.

Figure 5 shows the curve fitting results for the empiri-
cal curves presented in [8, Figure 2]. The measurements
were conducted for a short-range transmission at 5.3
GHz. Three exponential distributions of the scatterer
velocity with different variances are used in the tests.
Once again, the Chi-square statistical test shows that
the Doppler power spectrum under exponential scat-
terer velocity distribution follows closely the measure-
ment curve and describes well the slow time-varying
nature of the short-range channel at 5.3 GHz.

5 Conclusions

In this paper, the double Doppler effects caused by
scatterer motion with respect to the transmitter and
the receiver are studied under different scatterer ve-
locity distributions, including uniform, exponential,
half-Gaussian and triangular distributions. Analytical
curves of the Doppler power spectrum are compared
and statistically tested with measurement results, ex-
tracted and reproduced from empirical results pub-
lished in the literature. The curve-fitting and statistical
test results show that the exponential scatterer velocity
distribution outperforms the other distributions and
describes accurately the slow time-varying nature of the
fixed wireless channels. It also shows that the proposed
double Doppler model characterizes better the Doppler
effects caused by scatterer mobility at low velocities
than the single Doppler model does. In addition, more
investigation is needed to find a suitable distribution
that closely describes the scatterer velocities in fast-
varying fixed wireless channels, e.g., caused by passing
vehicles.
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