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Abstract– Using Phase Locked Loop based single channel Direction Finding (DF) system to estimate the bearing angle
or the coordinates of an incoming radio signal(s) has much more advantages than multiple receiver system does in many
practical scenarios such as mobile communication. This method utilizes a bank of Phase Locked Loops (PLLs) to calculate the
differential phase of signal received by an M-element uniform circular antenna array with a commutative switch followed
by single channel Software Defined Radio (SDR) receiver. One important factor when using conventional phase locked loop
is the requirement of the small convergence rate of the algorithm compared to the switching cycle. In order to achieve small
convergence rate, we propose a method for DOA estimation with low computation complexity that improves significantly
the performance of conventional PLLs system. An analysis of the challenges of computation complexity in this algorithm
is presented. The simulation results for DOA estimation using the proposed structure with low complexity are shown to
verify the performance of the system.
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1 Introduction

Radio Direction Finding (DF) is a technique that iden-
tifies the bearing angle or the coordinates of an in-
coming radio signals. The most important information
that estimated by a DF system is the Direction of
Arrival (DOA). DF systems have many applications
in Radio Navigation, Emergency Aid and intelligent
operations, etc. . . DF system can be classified by many
ways. Based on the system architecture, we have two
types: single channel DF and multi-channel DF. Multi-
channel DF system refers to the use of an antenna array
with multiple radio receivers in parallel. Multi-channel
DF system provides quite accurate DOA estimation at
the expenses of weight, computation complexity and
hardware cost. Because of this reason, the deployment
of multi-channel is impractical in some scenarios such
as mobile communication. On the other hand, Single-
channel DF refers to the use of a multi-antennas array
connected to a single channel radio receiver by a radio
frequency switch. The approach using DF obviously
offers some benefits such as mobility and lower power
consumptions. However, due to using switching cycle,
it cannot look at each antenna simultaneously, which
would be the case if one were to use multiple receivers,
also known as multi-channel DF. Therefore more com-
plex operations are needed at the antenna in order
to present the signal to the receiver. Based on the
signal processing manner, the two main categories that
a single channel DF algorithm falls into are amplitude
comparison and phase comparison [1, 2]. Some algo-
rithms can be hybrids of the two.

In [3–6], a single channel phase comparison DF al-
gorithm known as the Phase Locked Loop algorithm
is introduced. According to the results obtained, it is
well-performed in the laboratory environment. This
method utilizes a bank of Phase Locked Loops (PLLs)
to calculate the differential phase of signal received by
an M-element uniform circular antenna array with a
commutative switch followed by single channel Soft-
ware Defined Radio (SDR) receiver. Similar to other
phase based methods, the challenge when using PLLs is
computation’s complexity. In fact, one important factor
when using phase locked loop is the requirement of
small convergence rate of the algorithm compared to
the switching cycle. The more complex the computation
is, the more time is needed. When the source of signal is
mostly static, the problem is inconsiderable. However,
if the target moves at high speed, the DOA changes
rapidly. Thus, it is important to reduce the time of DOA
estimation. Moreover, the computation complexity has
a large impact on the performance of any radio receiver.
That is why we need to have a simpler complex in
computation of DOA information.

In this paper, we investigate a low complexity DF
algorithm based on digital PLL. We model the DF
system, including of an eight element circular antenna
array connected to a single channel software defined
radio receiver by a digital 8-to-1 switching circuit which
switches sequentially around the elements. The time
divided signals are then in turn leaded to one of eight
PLLs which then track the phase of the signal at each
antenna. The tracked phases are then differentiated and
fed into a signal processing block to produce DOA
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Figure 1. PLL DF system block diagram block

Figure 2. DOA estimation processing block

estimation. In this block, the PLL-DOA algorithm is
presented first. Then, we execute our signal processing
method with the same input. By this way, we can assess
the efficiency of the proposed algorithm in comparison
with the original algorithm as well as the performance
of the DF system.

The paper is organized as follows. Section 2 describes
the system architecture and the model of the incoming
signals. Section 3 presents in detail the PLL-DOA algo-
rithm with low computation complexity. In Section 4,
we examine this algorithm for multiple signal sources.
The simulation results are presented in the Section 5.
The conclusion is given in the section 6.

2 System Architecture and Signal Model

2.1 System Architecture

The DF system based on digital PLLs, as shown
in Figure 1, involves an M-element uniform circular
antenna with an M-to-1 RF switching connected to a
software defined platform receiver. In general, the inter-
spacing between antenna’s elements of an M element
array is less than half of wavelength of the highest
frequency is used. In our research, we employed an 8
element array with the radius equals half of the inter-
ested wavelength for practical implementation purpose.
The receiver will filter out and convert the RF signal
to a complex base-band signal. This signal is then fed
into one of 8 paralleled PLLs which is used to track the
phase of the incoming signal at each element. Figure 2
shows the block diagram of the processing flow after
the PLLs.

After being tracked, the phase at each element will
be differentiated to remove any phase offset and data’s
amplitude. As a result, a phase difference metric is cre-
ated between adjacent antenna elements. These phase
difference estimates are called “the given difference
curves”. Because of the known location of each antenna
element, a set of theoretical phase differences can be
created. This set of curves is called “the target difference
curves”. The mean square error (MSE) is calculated

Figure 3. Antenna array in the coordinate system

between the given and target difference curves. This
comparison is called “the Curve fit algorithm”. The
Curve fit algorithm removes any ambiguities on the
PLL data related to the modulation on the signal. DFT is
then performed on the PLL data to get the DOA infor-
mation and produce a qualify metric to estimate DOA.

2.2 Signal Model

In our research, we have defined the reference point
as the origin of the three Dimensional Cartesian coor-
dinate system shown in Figure 3. The phase difference
between any antenna and the reference point is given
below:

∆Ψ = β(xm cos θsin ı + ym sin θsin ı + zm cos ζ), (1)

where xm, ym, zm are the three dimensional coordinates
of mth antenna element, β = 2π

λ is the propagation
factor and ζ and θ are the DOA information in elevation
and azimuth, respectively.

The phase at the mth antenna relative to the reference
point is given as

am = gme−j∆Ψ, (2)

where gm is the gain of the mth antenna element.
The baseband output signal at the mth antenna is:

xm(t) = s(t)am, (3)

where s(t) is the incoming signal. This work concerns
about the signal in the same plane with antenna array.
This means that we estimate the DOA of signal of
interest in azimuth, ζ = 90o, zm = 0.

In an M element circular antenna array with a ra-
dius r,

xm = rcos
(

2πm
M

)
, ym = rsin

(
2πm

M

)
(4)

so
am = gm.e−j 2πr

λ cos( 2πm
M −θ) (5)

and
xm(t) = s(t)gme−j 2πr

λ cos( 2πm
M −θ) (6)
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Due to the modulation s(t) = c(t).e−jϕ, where c(t) is
data related to modulation and ϕ is the phase offset,
the signal received can be written as follows:

xm(t) = c(t).gm.e−j( 2πr
λ cos( 2πm

M −θ)+ϕ) (7)

In the Equation (7), we can see that the c(t) is the
amplitude and the exponential component is the phase
of incoming signal at each antenna element that will be
tracked by mth PLL.

3 High Performance PLL-DOA Algorithm

3.1 PLL-DOA Algorithm
According to Equation (7), if we do not consider

about the data of modulation, the output of the mth

PLL is:
φm =

2πr
λ

cos(
2πm

M
− θ) + ϕ (8)

(M = 8 in our model). From which, we can calculate
the DOA, θ, by the following equation:

θ = arccos(
φm − ϕ

A
)− 2πm

M
(9)

where A = 2πr
λ = π (due to the design). However,

because of the data modulation, the phase tracked is:

φ′m =
2πr

λ
cos(

2πm
M
− θ) + ϕ + nmπ,

(m = 0, 1, . . . , M− 1)

(10)

where n is factor of modulation (i.e. n = 0,±1 in case
the modulation type is BPSK). It shows the incorrect
result for DOA if Equation (8) is used. In order to
estimate the DOA, we must know nm first. If we try
to find the nm sequence now, there will be (2N − 1)M

possibilities (N is the modulation level). In addition, we
do not know the constant phase offset ϕ. Besides all of
these difficulties, we also have to consider the PLLs only
track the phases between [-π,π]. If the real phase of the
signal at each antenna is outside of range -π to π, the
PLLs will map the phase back by subtracting or adding
the phase with 2π. Thus, the phases coming from PLLs
and the target phases can differ by 2π. This point is
illustrated in Figure 4. The “theoretical phases” are
phases without phase offsets. The “expected phases”
line presents the phase measured at each antenna ele-
ment. The “actual phases” are outputs of PLLs. At 2nd,
3rd and 8th antennas, the phases of signal do not lie in
the range [-π,π]. Thus, the PLLs take them back.

Because of above analysis, we can not immediately
get the true DOA by the recorded phases from the
PLLs. To overcome this problem, we should remove all
ambiguities by the steps as follows.

After being tracked, the phases will be differentiated
to remove the phase offset occurring in all phases. We
consider “the first target difference curve” as

∆φm = φm − φm−1

= −2A sin
( π

M

)
sin
(

2πm
M
− π

M
+ θ

) (11)
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Figure 4. Theoretical and PLL output phase at each antenna.

In case of the data modulation, “the first given dif-
ference curve” is given as

∆φ′m = φ′m − φ′m−1

= −2A sin
( π

M

)
sin
(

2πm
M
− π

M
+ θ

)
+ ∆nmπ

(12)
Our objective is to find the ∆nm. Although the differ-

ence ∆nm has much larger range than nm, this sequence
is still found by the following way.

The target curve is aimed to be found from the given
curve. To do that, we have to create the target difference
curves database. If we have N level modulation, we
have (2N − 1) values of difference phase. We have M
antenna elements so we have (2N − 1)M sequences.
However, by using the maximum value ∆φm, Dmax,
we can eliminate several of these possibilities. From
Equation (11), Dmax = 2A sin

(
π
M
)

with A = π, M = 8
so Dmax < π. Therefore, any points at “the first target
difference curve” cannot exceed [-π, π]. Because the
algorithm tries to get the target curve from the given
curve, we can eliminate several possibilities that makes
the first difference exceeds [-π, π]. It means that for
BPSK modulation, we have only two phase difference
values: 0, π.

For M = 8, ∆nm = (0, 1), we have 28 = 256 possible
curves. We create a table to show all of these possibil-
ities. Next, we divide the possible DOA, θ, with range
in [-π, π] radian into N1 bins, and create the target first
difference curve for each possible DOA. We then select
one of the N1 × 256 first given difference curves and
compare to the first target difference curves, i.e. choose
the one for which the squared error is minimized. Once
we have found the sequence ∆nm, we can use the first
difference curve to calculate the DOA.

After removing the ∆nm, the target difference curve
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Figure 5. The first phase difference curve before corrected without
modulation.

can be represented as following vector:

f [m] =



− 2Asin(
π

M
)sin(− π

M
+ θ)

− 2Asin(
π

M
)sin(

2π

M
− π

M
+ θ)

. . .

− 2Asin(
π

M
)sin(

2πm
M
− π

M
+ θ)


(13)

The FFT of this vector is

F[k] =
M−1

∑
m=0

f [m]e
−2πmk

M (14)

All of F[k] are zeros except

F[1] = c
[
cos

( π

M
+ θ
)
+ j sin

( π

M
+ θ
)]

(15)

Thus the estimated DOA is

θ =
π

2
− π

M
− arg(F[1]) (16)

Evidently, the size of the first target difference curve
database is still too large. This fact requires a significant
number of complex calculations as well as much more
time needed for computation.

3.2 PLL-DOA Algorithm with Low Computation
Complexity

In order to realize the real system, we have to reduce
the complexity as well as decrease the calculation time
so we propose a new method as follows.

3.2.1 In Case of No Modulation Incoming Signal:
When we do not concern the data modulation, the
phase of the incoming signal at each antenna element
is modeled as Equation (8). By plotting these phases,
we can get the sinusoid form as shown in Figure 6.
According to the Equation (11), it is clear that the first
difference is still a sinusoid. However, due to the impact
of PLLs‘s boundary, the first difference curve does not
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Figure 6. Theoretical phase at each antenna element in case of no
modulation.

match a sinusoid as seen in Figure 5 though there is no-
modulation. In order to solve this problem, we calculate
“the second target difference curve”:

∆φ′′m = ∆φm − ∆φm−1

=
−8πr

λ
sin2(

π

M
)cos(

2πm
M
− 2π

M
+ θ)

(17)

The purpose of the second difference curve is to
locate the antenna element at which the phase is added
or subtracted by 2π. For each peak in “the first differ-
ence given curve”, we compare with the corresponding
points in “the second difference given curve”. If the
consecutive values exceed π or -π then we subtract or
add 2π to the first difference. In Figure 5, we can see
the peaks at 2nd and 3rd antennas in the first difference
curve. Now we investigate how the second difference
corrects the first difference. The second difference curve
is presented in Figure 7.

In the second difference curve, there have two consec-
utive couple of values exceed the range of -π to π. They
are (2nd, 3rd) and (3rd,4th) corresponding to the peaks
at 2nd and 3rd antennas in the first difference curve.
So we add phase at antenna 2nd by 2π and subtract
phase at 3rd by 2π. The first difference curve after being
corrected is shown in Figure 8.

After corrected, the target difference curve matches
the sinusoid as defined in Equation (11). By using the
Equation (13) to Equation (16), we can easily get the
DOA information.

3.2.2 In Case of Modulation Incoming Signal:
Similar to the original algorithm, we also have to cal-
culate “the first target difference curve” and “the first
given difference curve” in succession. In case of N
level modulation and M antenna elements, we have the
number of possible curves as:

a = (2N − 1)M (18)

If we use the original algorithm, we can eliminate a
lot of these possibilities. However, the number of pos-
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Figure 7. The second phase difference (in case of no modulation).
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Figure 8. The first phase difference after corrected.

sible curves is still an exponential function of M. Our
objective is to reduce the complexity of computation.
Instead of having to compute and find in (2N − 1)M

possibilities, we can reduce to (2N − 1)×M findings.
We do not have to create the database of target curve.
The possible target curves will vary for different times.
For N level modulation, we have (2N− 1) phase differ-
ence values. From the first to the last antenna element,
we assume that one of (2N − 1) different values occur
at that element. We use the assumed value of ∆nm to
calculate a value of possible DOA. We consider this
DOA as assumed DOA obtained by using Equation (12)
in which ∆φ′m is a point on “the first given difference
curve”. After that, based on Equation (11), we calculate
the possible target difference curve corresponding to
the calculated assumed DOA. Then we use the given
curve and the possible target curve to estimate ∆nms.
The target curve is added by ∆nms and the squared
error of the target curve and the given curve are calcu-
lated. We choose the sequence ∆nm for which the value
of squared error is minimized. By this algorithm, the

number of possible curves are only

b = (2N − 1)×M (19)

After finding the correct sequence of ∆nm, the DOA
information will be estimated by the same method
presented in above cases.

It is easy to see that the complexity is significantly
reduced by the proposed algorithm. The number of
calculation is multiple of the number of antenna ele-
ment, (2N− 1)×M, instead of an exponential function
of this factor, (2N − 1)M, as in the conventional PLL
algorithm [3–5]. That is why it can be operated in real
time thanks to its low computation complexity.

4 PLL-DOA Estimation With Multiple

Signal Sources

In practice, there are several radio signals crossing the
antenna array simultaneously. The received signal at
each antenna element will be the sum of all arrival
radio signals. However, due to the behavior of filters
and PLLs, only the signal of interest whose frequency is
in the lock range of PLLs will be passed. In the presence
of multipath, many incoming signals will have the same
frequency. If one signal is the line-of-sight signal, it
should be significantly stronger than others because
it has propagated over a shortest distance. When one
signal is the strongest signal, the PLL will track it. In the
special situation, there are at least two incoming signals
have the same frequency and amplitude. For this case,
PLLs will track all of them. In the rest of our work, we
will focus on any approaches to solve this problem.

Let us define two signals impinging on the antenna
array as

S1,m(t) = A cos
(

ωct +
2πr

λ
cos

(
2πm

M
− θ1

)
+ ϕ1

)
(20)

S2,m(t) = A cos
(

ωct +
2πr

λ
cos

(
2πm

M
− θ2

)
+ ϕ2

)
(21)

where ωc is the carrier frequency; ϕ1, ϕ2 are the phase
offsets and θ1, θ2 are the DOAs. The output at each
antenna is simply modeled as the sum of two signals

Sm(t) = S1,m(t) + S2,m(t) (22)

Based on the formula

cos(a) + cos(b) = 2 cos(
a + b

2
) cos(

a− b
2

) (23)

where

a = ωct +
2πr

λ
cos(

2πm
M
− θ1) + ϕ1 (24)

b = ωct +
2πr

λ
cos(

2πm
M
− θ2) + ϕ2 (25)
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we have:

a + b = 2ωct + ϕ1 + ϕ2

+
2πr

λ

[
cos(

2πm
M
− θ1) + cos(

2πm
M
− θ2)

]

= 2ωct + ϕ1 + ϕ2

+
4πr

λ
cos(

2πm
M
− θ1 + θ2

2
) cos(

θ1 − θ2

2
)

(26)
By doing the same way, the difference should be:

a− b = ϕ1− ϕ2−
4πr

λ
sin(

2πm
M
− θ1 + θ2

2
) sin(

θ1 − θ2

2
)

(27)
It is easy to recognize that the (a − b) term is not

the function of carrier frequency thus it relates to the
amplitude part of the output signal Sm(t). Meanwhile,
the (a + b) term is the function of frequency therefore
it is belongs to the phase component of signal received
at mth antenna.

Based on this analysis, we have the phase output at
each PLL is as:

φm =
ϕ1 + ϕ2

2
+

2πr
λ

cos(
θ1 − θ2

2
) cos(

2πm
M
− θ1 + θ2

2
)

(28)
Define

ϕ1 + ϕ2

2
= ϕ; θ =

θ1 + θ2

2
; θ′ =

θ1 − θ2

2
(29)

The Equation (28) becomes

φm = ϕ +
2πr

λ
cos(θ′) cos(

2πm
M
− θ) (30)

This equation has a same form as the expected phase
as given in Equation (8). As a result, the first difference
curve is calculated by:

∆φm = −2A sin(
π

M
) cos(θ′) sin(

2πm
M
− π

M
− θ) (31)

where A = 2πr/λ
Therefore we can apply the PLL-DOA algorithm with

low computation complexity in this case. However, the
final DOA information now becomes:

θ =
θ1 + θ2

2
(32)

In order to overcome this obstacle, after finding θ, we
select one value in the set of true first difference values
that we have calculated. Based on Equation (31), we can
find the function of the difference angular between two
directions, cos [(θ1 − θ2) /2], by:

B = cos(θ′)

=
∆φm

−2A sin
( π

M

)
sin
(

2πm
M
− π

M
− θ

) (33)

with
θ′ = cos−1(B) (34)
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Figure 9. DOA estimation with variable number of antenna
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Figure 10. Error of DOA estimation (degrees) vs the number of
antennas

After finding the θ and θ′, the DOAs are simply calcu-
lated by:

θ1 = θ + θ′ (35)

θ2 = θ − θ′ (36)

5 Simulation Results

The proposed DF algorithm is simulated using Matlab
in order to examine the performance of the algorithm.
First we simulate our algorithm with variable number
of antenna. Figure 9 shows the DOA accuracy for
variable number of antenna at the DOA of 50 degrees.
It can be seen that the proposed algorithm operates
well when the number of antennas are more than two.
However, the number of antenna elements in the array
does not affect to the result accuracy significantly. To
clarify this point, the errors in DOA estimations are
depicted in Figure 10. In Figure 10, as we change the
number of antennas, the error varies but with only
small amount. It tends to decrease when the antenna’s
elements increase. For practical purpose, we use the
model of eight elements to verify the performance of
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Figure 12. DOA estimation in AWGN channel.
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Figure 13. DOA estimation with the different number of snapshots.

the algorithm. Figure 11 plots the DOA estimation in
the AWGN channel at the DOA of 45 degrees. We
can see that the DOA of signal of interest is estimated
accurately with the proposed algorithm with very small
error.

Table I
Comparing between Convergence Time of Two Approaches

DOA PLL - DOA algorithm Proposed algorithm
(Degrees) (Seconds) (Seconds)

35 0.5131 0.0134
40 0.5019 0.0131
45 0.5103 0.0129
53 0.5139 0.0134
68 0.5115 0.0129
77 0.5253 0.0132
89 0.5505 0.0130
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Figure 14. Simulated results for DOA estimation of 2 signals at 28o

and 63o .

In Figure 12, the results for many cases of DOAs
are presented. The simulation is performed with the
AWGN channel, the value 10 dB of SNR and 100
simulation runs per DOA. The circle shows the true
DOA while the line shows the DOA estimated by our
algorithm. Although at the true DOA of 180 degrees,
the proposed algorithm estimates the DOA 360 degrees
away, which is still correct.

Furthermore, the number of snapshots at each an-
tenna is also a factor that makes a better estimation
result. The more snapshot is taken, the better result we
get. Figure 13 shows the effect of number of snapshots
to DOA estimation.

In order to compare the convergence time between
the PLL - DOA algorithm and the proposed method, we
execute both methods with several DOAs. The results
are stored in the Table.1. In the Table.1, we can easily
see that the PLL - DOA algorithm with low complexity
is much faster than others.

In the remainder part of our work, we verify the
performance of the proposed algorithm with two in-
coming signals which have the same carrier frequency
and equaled signal power. With this algorithm, all pairs
of DOAs we tested are successfully determined. The
two estimated DOA examples of 28 and 63 degrees are
plotted in Figure 14.

6 Conclusions

We propose in this paper a new direction finding
system for DOA estimation based on PLLs with low
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computation complexity. By reducing number of pos-
sible curves, the novel architecture not only has a lot
of advantages of SDR receiver but also the computa-
tion complexity is significantly reduced in comparison
with the conventional system. In original algorithm,
the number of finding is an exponential function of
the number of antenna element. With the new method,
the number of finding is now only multiple of the
number of antenna element. This improvement allows
the possibility to reduce the time needed for computa-
tion. The proposed system with low complexity can be
implemented for real time application.
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