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Abstract– The low level of received signals power makes Global Navigation Satellite Systems (GNSS) receivers vulnerable to
many classes of disturbing signals. Among them, narrow band interference (NBI) might cause serious receiver performance
degradation. Cancellation of NBI can be implemented by using notch filters (NF), which are controlled by two parameters:
the notch frequency, which specifies the band center, and the notch bandwidth, which defines the spectrum area to be
removed. The literature on the topic focuses on adapting the notch frequency, without estimating the filter bandwidth.
This paper proposes a method able to determine both the notch parameters, optimizing the interference suppression. The
performance analysis shows a good improvement by using the adaptive bandwidth notch filter.
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1 Introduction

Though the main applications based on the satellite
navigation are related to the transports domains, nowa-
days the Global Navigation Satellite Systems (GNSSs)
play a fundamental role in several fields, belonging
to very different areas. The tracking of vehicles fleets
(trains, trucks, or vessels), the synchronization of com-
munications and energy distribution networks, the lo-
gistics, the mapping of the territory and the systems
for the coordination of the rescue teams are examples
of important civil applications. Within this scenario, the
requirements that the GNSS receiver has to fulfill, both
in terms of accuracy and continuity, are becoming more
and more stringent.

GNSS systems like GPS and Galileo are based on the
Direct Sequence-Spread Spectrum (DS-SS) technique,
which intrinsically gives them a high level of robust-
ness [1]. At the same time, it has to be considered that
the satellite signals arrive at the receiver antenna with
an extremely low level of power (approximately 20 dB
below the noise floor). This makes them vulnerable to
different types of disturbance, among which the Radio
Frequency Interference (RFI) from external sources is
one of the main threats.

All the systems transmitting at carrier frequencies
close to the band of interest are potential sources of in-
terference for a GNSS receiver, and even small leakages
out of their allocated bandwidth can become a threat
for the receiver. Even though events of unintentional
RFI are generally unpredictable, several cases have been
experienced in the past and reported in literature [2–6].

Moreover, the growing number of wireless communica-
tion infrastructures increases the probability that some
out of band energy affects the performance of GNSS
receivers.

Normally, the RF interference is classified as wide-
band (WB) or narrow-band (NB), depending on the
ratio between the interference and the desired GNSS
signal bandwidths [7]. In this sense, an interference
might be classified differently, depending on the spe-
cific GNSS signal that is considered (e.g., the same
interference can be classified as wide for the GPS L1
C/A code and narrow for the GPS P(Y) code). The
limit for a narrow-band interference is a single tone [7],
usually referred to as continuous wave (CW).

In the literature, several examples of proposed solu-
tions able to detect (and eventually mitigate) interfering
sources can be found [5, 8–10]. Normally, the monitor-
ing techniques are properly designed to cope with a
specific class of disturbances (wideband, narrowband,
pulsed signals, etc.). In this paper we focus on the
class of narrow-band interferers (NBI), where the term
“narrow” has to be considered with respect to the
GPS L1 C/A code and the Galileo E1 signals (i.e., the
interference bandwidth is within tens of kilohertz).

Considering such a classification and in accordance
with [11], for this kind of disturbing signals, the notch
filter (NF) has proved to be an efficient mitigation tech-
nique, since it can be considered a good compromise
between efficiency and complexity. When using a NF to
remove narrowband interference, it has to consider its
two parameters: notch frequency and notch bandwidth.
The notch frequency decides the center frequency to
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Figure 1. Frequency response of notch filter for two difference pole
factors.

be removed. The notch bandwidth is the width of
frequency region in which the signal power is reduced
by 3 dB. The notch frequency can be adapted and track
the interference frequency by using the Least mean
square (LMS) algorithm [11]. However, the problem of
determining the notch bandwidth has not been con-
sidered. To further improve the interference mitigation
capability, in this paper, we propose an interference
mitigation module based on adaptive notch filtering,
which takes into account the adaptation of both the
notch frequency and the notch bandwidth. The perfor-
mance analysis proves an improvement of 1 to 3 dB for
the proposed method with respect to the conventional
one in the literature.

As for the paper structure, after this introduction,
Section 2 introduces the application of the notch filter
in the narrowband interference mitigation. Section 3
proposes two added methods in the interference miti-
gation module of a GNSS receiver: one for interference
bandwidth estimation and the other for the NF con-
figuration. Section 4 gives performance analysis of the
proposed module, and Section 5 concludes the paper.

2 Notch Filter for Narrowband

Interference Mitigation

2.1 Overview of Notch Filter

As defined in [12], a notch filter (NF) is a filter that
passes all frequencies except those in a stop or rejection
band centered on a central frequency. Therefore, a notch
filter can be defined by two parameters: the notch
bandwidth BN , and notch frequency fN .

There are several ways to implement a notch filter,
normally divided in three main classes: the Fast Fourier
Transform (FFT)-based, the Finite Impulse Response
(FIR), and the Infinite Impulse Response (IIR) notch fil-
ters [12]. In recent years, IIR notch filters are considered
for GNSS interference mitigation because of their low
computational requirements, efficient implementation
and low number of parameters to be adapted [11].

The IIR two-pole NF has the following transfer func-
tion [11]:

H(z) =
1− 2Re{z0}z−1 + |z0|z−2

1− 2kαRe{z0}z−1 + |z0|k2
αz−2 (1)

where z0 = rej2π fN is the zero, which corresponds to the
notch frequency fN , and kα (with 0 < kα < 1) is the pole
contraction factor, which decides the notch bandwidth.
To effectively exploit the capability of NF for removing
interference signals, the zeros should be constrained to
be on the unit circle [13].

Figure 1 reports the frequency responses of a notch
filter with two different pole factors. It is clear that the
pole factor kα decides the width and the depth of the
notch: the more the value of kα is close to unity, the
narrower and shallower the notch is. In other words,
the notch bandwidth is characterized by the pole factor
kα, as it decides which frequency components and how
much their power will be removed. Hence, the problem
of determining kα is very important.

2.2 GNSS Receiver Structure with NF Interference
Mitigation Module

As mentioned in Section 1, the notch filter has been
proved to be an efficient interference mitigation tech-
nique. Figure 2(a) shows a high-level block diagram
of the GNSS receiver chain, where the Interference
detection/estimation block and the Notch filter block
are present. After arriving at the receiver’s antenna,
the GNSS signal (with the noise and the interference
components) is filtered, down-converted to the Inter-
mediate Frequency (IF), and sampled by the front-end.
Then, the ‘Interference Detection and Estimation unit’
is in charge of (see Figure 2(b)):
• Deciding if the interference is present (and the

notch filter needs to be activated);
• The interference frequency fint and interference

bandwidth Bint are estimated as fint and Bint. Then,
the NF parameters fN and kα are calculated based
on the estimated values.

If no interference is detected, then the regular signal
processing is implemented; otherwise fint and Bint pro-
vided by the “Interference Detection and Estimation
Unit” block are used to configure the NF, which is re-
sponsible for suppressing the interference components
in the IF signal samples.

In reality, the characteristics of the interference signal
vary with time. As an example, Figure 3 (from [4])
shows some plots of spectra evaluated (every 18 sec-
onds over a 1 minute of data set) from live signals,
collected in a hostile environment. It is evident how
the signal spectrum changes significantly over time and
several spurious peaks appear always over the same
frequency ranges (i.e. [1-3] MHz and [6-8] MHz), but
with different widths of band. For this reason, the
notch filters are often designed in order to adapt and
track the interference signal. The adaptation of the NF
towards the interference signal variation along time is
performed following the two steps below:
• Step 1: Continuously estimate fint and Bint.
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(a) High-level block diagram of the GNSS receiver chain

(b) Detection/Estimation Unit

Figure 2. High-level block diagram of the GNSS receiver chain.

• Step 2: Reconfigure the NF via resetting fN and kα

based on the estimated values of fint and Bint.
2.2.1 Interference Frequency Estimation (or Interference

Detection):
When using NF to remove interference, it is nec-

essary to know the notch frequency (or interference
frequency). However, in reality, this parameter is un-
known and might vary over time. Thus, an adaptive
notch filter (ANF) is designed to estimate and track it
automatically. To do this, it is important to note that
if the notch frequency matches the interference carrier
( fN = fint), the amount of removed power will be
maximum, and the power of signal after filtering will
be minimum. Due to this statement, the ANF can be
implemented by using the Least Mean Square (LMS)

Figure 3. Spectrum at the front-end output at different time instants
(from [4]).

algorithm to minimize the power of filter output, as
follows [11]. The zero z0 of transfer function (1) is
updated iteratively. If the interference is present, the
angle of z0 will converge to the interference frequency.
The iterative rule to update z0 is

z0[n + 1] = z0[n]− µ∇z0(|y[n]|2), (2)

where ∇ denotes the stochastic gradient, µ is the algo-
rithm step and y[n] is the output of the notch filter [11].
The estimated interference frequency fint can be calcu-
lated from the mean of z0 after convergence.

Since z0 is complex, the adaptation is performed with
both the real and image part of z0. The simulation
results showed that if any interference is present in the
received signal, the adapted zero converges close to the
unit circle. Therefore, [11] introduced a detection unit
using the mean value of the amplitude of z0 to check
if the notch filter is tracking an interference.

This type of filter can be used for both interference
detection and mitigation [11]. However, since its zeros
are not constrained to unit, this might reduce the
capability of the NF for removing interference. Thus, it
is only used for the Detection and frequency estimation
block in this paper.

2.2.2 Interference Bandwidth Estimation:
Besides frequency, bandwidth is also an important

characteristic of interference because it relates to the
configuration of NF. As explained in Section 2.1, kα

decides the width of the removed frequency region.
Thus, to determine kα, the estimation of the interference
bandwidth Bint is necessary. Furthermore, at the same
time, not only the interference frequency but also the
interference bandwidth can be variable as shown on
Figure 3. This illustrates the need for tracking the
change of the interference band. However, to the best
of our knowledge, there has been no work on the esti-
mation of Bint. Therefore, in Section 3 we propose two
methods: one for estimating and tracking Bint and the
other for estimating kα for the NF from the estimated
value.
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(a) Spectrum of interfered signal

(b) Zoom in the interference band

Figure 4. Spectrum of the input signal.

3 Proposed Adaptive Bandwidth Notch

Filter

In this section, we introduce the methods to estimate
Bint and choose kα for the final NF. They are imple-
mented in the Bandwidth estimation block and NF
parameters estimation block in Figure 2(b).

3.1 Interference Bandwidth Estimation
Firstly, consider a GPS signal generated by N-

FUELS [14]. It contains a GPS PRN 1 signal in L1 band,
at nominal outdoor signal power: 45 dB-Hz of carrier to
noise ratio. It is affected by an interference signal with
170 kHz of bandwidth and frequency at 42 kHz from
the GPS carrier (the worst interference frequency for
PRN 1 [7]). The signal spectrum is shown in Figure 5(a).
The x-axis is normalized with respect to the L1 carrier
frequency ( f = 0 corresponds to the GPS band center).

Figure 5(a) shows the signal power at the output
of a NF, whose notch bandwidth is fixed at 30 kHz
and whose frequency sweeps over the spectrum range.

(a) Signal power at the output of a NF

(b) Derivative of the signal power at the output of a NF

Figure 5. The signal power at the output of a NF and its derivative.

The two circles indicate the portion of the spectrum
occupied by the interference (Bint=170 kHz). Further-
more, Figure 5(b) shows the derivative of the output
power (in Figure 5(a)). It is easy to observe how the
distance between the two critical points (maximum
and minimum) is a good estimation of the interference
bandwidth.

On the basis of the described approach, the proposed
solution for the bandwidth estimation block follows the
next procedure:
• Two notch filters with fixed predefined bandwidth

are used with the scope of estimating the interfer-
ence bandwidth Bint. Each NF works on a single
portion of the spectrum (i.e., one NF finds the mini-
mum and one NF finds the maximum of derivative
of the filter output power), using the interference
frequency estimation fint as the starting point.

• The frequencies at the output of the two notch
filters are the limits of the interference band.

This block is presented more clearly in Figure 6.



T. T. T. Nguyen et al.: An Adaptive Bandwidth Notch Filter for GNSS Narrowband Interference Mitigation 63

Figure 6. Bandwidth estimation block.

ANF 1 and ANF 2 can be implemented by the same
way of the ANF in Section 2.2.1. However, the LMS
algorithm is applied to minimize and maximize the
derivative of the filter output power. Thus, instead
of converging to the interference frequency, they will
converge to the two limit frequencies of interference
band. To exploit the capacity of interference removal,
the zeros of NF in the paper are constrained to unit.
Thus, the iterative rule for the updating process in (2)
is considered only for the real part of zeros as follows:

β[n + 1] = β[n]± µ∇2
β(y

2[n])

= β[n]± µ[(∇βy[n])2 + y[n] ∗ ∇2
βy[n]],(3)

where µ is the algorithm step [11], and β(1) =
cos(2π fint). The operation ‘−’ is used for the ANF 1,
which performs the maximization, and the operation
‘+’ is used for the ANF 2, which performs the mini-
mization.

To reduce the number of variables needed to be
adapted, the zeros of transfer function (1) are con-
strained to be on the unit circle. Thus, ∇βy[n] and
∇2

βy[n] can be deduced from y[n] as follows:

y[n] = 2β[n]kαy[n− 1]− k2
αy[n− 2] + x[n]

−2β[n]x[n− 1] + x[n− 2], (4)
∇β(y[n]) = 2kαy[n− 1] + 2kαβ∇β(y[n− 1])

−k2
α∇β(y[n− 2])− 2x[n− 1], (5)

∇2
β(y[n]) = 4kα∇β(y[n− 1]) + 2kαβ∇2

β(y[n− 1])

−k2
α∇2

β(y[n− 2]). (6)

When the LMS algorithm reaches its steady-state,
the standard deviation of the output frequency has
to be smaller than a threshold T. Moreover, during a
convergence period the frequency deviation does not
exceed the quarter of the filter bandwidth [15]. Thus,
the stop convergence of ANF 1 and ANF 2 can be
created when:{

σ(cos−1(β[n])) 6 T

cos−1(β[D(k)])− cos−1(β[D(k− 1)]) 6 BN
4

where k ∈ N, BN is the bandwidth of filter,
σ(cos−1(β[n])) is the standard deviation of the output
frequency during the period of D-iteration. For the
simulations in the rest of this paper, D = 5× 105 and
T = 500 to ensure both the speed and the accuracy of
the stop of convergence.

Consequently, the bandwidth of interference can be
calculated from the mean values at their output fre-
quency during their convergence period, as follows:

B̂int = | f̂1 − f̂2| =
| cos−1(β̄ANF1)− cos−1(β̄ANF1)|

2π
(7)

where the bar symbol denotes the mean value.

3.2 Adaptive Bandwidth Notch Filter Configuration
As point out in the Appendix, the carrier to noise

ratio C/N0 of the received signal after filtering can be
expressed as

C
N0

=

Cs
N0
|

Fs
2∫

0
H( f )S( f )d f |2

Fs
2∫

0
|H( f )|2S( f )d f + Ci

N0

fint+
Bint

2∫
fint−

Bint
2

|H( f )|2S( f )d f

(8)

where Fs is the sampling frequency, H( f ) is the transfer
function of filter, Si( f ) and S( f ) are the normalized
power spectral density of the interference and the GNSS
signal, Cs, Ci are the power of the received GNSS signal
and the interference signal, respectively, Bint is the
bandwidth of interference and fint is the interference
frequency.

Figure 7 shows the theoretical line of C/N0 with a
typical signal available to the commercial GPS receiver
with interference bandwidth Bint = 25 kHz and Pi/Ps =
30 dB (data demodulation threshold for the width-band
interference) [16]. The interference frequency matches
the GPS signal frequency. Since the large kα leads to the
distortion of the useful signal, kα in the range [0.9, 1)
is often chosen in experiments [11, 13, 17]. [17] recom-
mended that kα should be set at 0.9. In this experiment,
the notch filter is investigated with kα larger than 0.9.
It can be seen that the best kα is about 0.97.

According to [17], the relation between kα and the
notch bandwidth can be estimated as follows:

BN =
Fs(1− kα)

π
. (9)

Thus, kα of 0.97 corresponds to the notch bandwidth
of about 155 kHz (Fs = 16.3676 MHz). This value does
not match the interference bandwidth, because C/N0
depends on not only the interference bandwidth, but
also the power of interference. Thus, it is not possible to
use the estimated interference bandwidth to calculate
kα directly by (9). In this paper, kα will be estimated
based on the expression (8).

It has to note that there are four parameters to be
considered in (8): (i) the power of the useful signal Ps,
(ii) the noise density N0, (iii) the interference bandwidth
Bint and frequency fint, and (iv) the power of interfer-
ence Pi. However, Ps does not change the shape of the
C/N0 line, so it is not necessary to know this value
in advance. N0 can be calculated from the temperature
of the environment. fint and Bint are provided by the
Detection and estimation unit. and Pi can be estimated
by spectrum analysis and refined after signal process-
ing. In this section, these parameters are assumed to be



64 REV Journal on Electronics and Communications, Vol. 4, No. 3–4, July–December, 2014

Figure 7. Theoretical C/N0 when bandwidth of interference Bint =
25 kHz (ACARS Harmonics) and Pi/Ps = 30 dB.

known in advance. Now, (8) has only one variable kα.
However, it is difficult to find the value of kα directly
from

k̂α = arg max
kα

{ C
N0

(kα)} (10)

Fortunately, since the pseudo-range code of GNSS
signal has the line spectrum spaced at 1 kHz, Equa-
tion (8) can be discretized and calculated fast and
easily with varying kα. Thus, the problem (10) can be
solved approximately by the numerical method. Then,
the configuration of NF can be completed.

4 Performance Analysis

4.1 Bandwidth Estimation
In this section, the simulation results obtained by

implementing the bandwidth estimation block will be
presented. The characteristics of the input signal are
as introduced in Section 3.1. The notch bandwidth
of the two ANFs is fixed at 30 kHz. The estimated
frequencies at their output are shown in Figure 8. The
two black lines correspond to the actual limits of the
interference bandwidth, while the red and blue lines
are their estimation.

Figure 9 shows the achieved result with the simulated
signal, which has the configuration as in Section 3.2.
Similar to Figure 9, ANF 1 and ANF 2 work well on
estimating the interference bandwidth.

The stop of convergence is also shown in Figures 8
and 9. In the case of a wide narrow-band interference
(Bint = 170 kHz) as in Figure 8, the algorithm is found
to reach the steady state after 2.5× 106 iterations (about
0.153 s). For the narrower interference band (Bint = 25
kHz) in Figure 9, the time requirement is shorter with
106 iterations (about 0.06 s). The bandwidth of some
unintentional interference sources for L1 band is under
100 kHz. For example, the Aircraft Communication Ad-
dressing and Reporting System (ACARS) with 25 kHz,

Figure 8. Simulation results: estimation of the interference band-
width (Bint = 170 kHz).

Figure 9. Simulation results: estimation of the interference band-
width (Bint = 25 kHz).

and the SATCOM Communications with 20 kHz [16].
Thus, the rate of convergence as the results is accept-
able.

Furthermore, the performance of the algorithm has
also been tested in case of variable the interference
bandwidth. Figure 10 shows the results when the al-
gorithm is applied to a data set of 1 s containing
an interference source, whose characteristics vary over
time (i.e., the interference bandwidth is 10 kHz over
the first 500 ms, and 18 kHz over the last 500 ms of
simulation).

Although the proposed bandwidth estimation block
is able to estimate interference band, it has a limit
related to the selection of prefixed bandwidth of ANF 1
and ANF 2. It can be seen in Figure 11, which shows the
results of the interference bandwidth estimation for dif-
ferent choices of NF bandwidth. The red line indicates
the real interference bandwidth, i.e., Bint = 170 kHz.
It is worth noticing how the algorithm is able to finely
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Figure 10. Estimated interference bandwidth over time, in case of
variable band.

Figure 11. Interference bandwidth estimation for different NFs
bandwidth.

estimate the bandwidth, when the width of the NFs
bands is less then half of Bint.

4.2 Notch Filter Parameters Adaptation

In [17], the authors recommended that kα should be
set at 0.9 to provide good performance, whereas, in [13],
kα = 0.99 is recommended. In this section, a comparison
the quality of the signal after filtering by NFs with
three different kα is given, where two are recommended
in [17] and [13], and the other is calculated by the
proposed method in Section 3. The sequence number
of codes and Doppler shift frequency of the satellites
presented in the input signal are chosen randomly.
The interference frequency matches the intermediate
frequency: fint = fIF. The used method to estimate
C/N0 is Signal to Noise Variance [18].

It can be seen from the Table I that a too narrow
notch does not remove enough the interference power;
then it might lead to the signal loss of track. Whereas,
a too wide notch leads to the loss of the useful signal,
then reduces the value of C/N0. In the presence of the

proposed interference mitigation module, the quality
of the signal is improved more than 1 dB compared to
the cases of kα = 0.9 and kα = 0.99. This is because
the removed power of the interference is balanced with
the unwanted loss of the useful signal in presence of
the proposed module. Therefore, a module to tune this
factor, as proposed in Section 3, is necessary.

5 Conclusion

Narrow-band interferers can be classified among the
most dangerous threats for GNSS receivers. For this
kind of disturbing signals notch filtering has proved
to be an efficient mitigation technique, because it can
be considered a good compromise between efficiency
and complexity.

The use of NF in interference mitigation requires
the knowledge of interference characteristics. Much
research in the past only focused on determining the in-
terference frequency. In the current work, we proposed
a technique that aims at estimating and tracking the
bandwidth of the filter. Then, an expression of C/N0
was given to evaluate the quality of the filtered signal.
It is also used to optimize the configuration of NF.

Simulation results showed that the proposed meth-
ods can estimate the bandwidth of interference and
choose an appropriate pole factor for NF. Though some
open issues still have to be solved, the promising out-
comes give the motivation for further investigations.
Future work will mainly focus on the tuning of the
bandwidth of the two notch filters used for the inter-
ference characterization.

Appendix A
Proof of Equation (8)

The received signal can be expressed by

s(t) = g(t) + w(t), (11)

where g(t) is GNSS signal; w(t) is noise, which includes
white noise and interference.

Assume that the baseband signal is processed by a
correlator, with the integration time T and local code
m(t), the correlator output of each component is:

Rs (0) =

∫ T
2

− T
2

g (t)m (t) dt, (12)

Rw (τ) =

∫ T
2

− T
2

w (t)m (t− τ) dt. (13)

According to Plancherel theorem [19], correlation of
the useful signal can be written as

Rs(0) =

∫ T
2

− T
2

g (t)m (t) dt

=

∫ Fs
2

− Fs
2

X ( f ) M( f )d f , (14)
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Table I
C/N0 of GPS Signals after Filtering by NF. The Interference Bandwidth Bint = 25 kHz

Pi PRN Doppler shift kα = 0.9 kα = 0.99 Proposed Method
C/N0 B̂int, koptimize

α

−126.5 dB

1 2500 38.90 34.79 38.85

B̂int = 23.6 kHz, kα = 0.965
5 1600 39.26 35.23 39.41
7 5000 38.68 Loss of track 38.59
12 4200 38.93 35.23 38.95

−135.5 dB

1 2500 40.16 40.82 41.66

B̂int = 25.1 kHz, kα = 0.98
5 1600 39.85 41.29 41.91
7 5000 39.85 40.97 41.61
12 4200 40.19 41.25 42.07

where Fs is the sampling frequency, X( f ) and M( f ) are
Fourier transforms of g(t) and m(t), respectively. M( f )
denotes the complex conjugation.

If the received signal goes through a filter with
transfer function H( f ), (14) can be rewritten as

Rs(0) =

∫ Fs
2

− Fs
2

H ( f ) X ( f ) M( f )d f , (15)

where Cs is the post-correlation power of GNSS signal,
S( f ) denotes normalized power spectrum of the GNSS
signal. Since g(t) is modulated by the pseudo-range
code, the power of useful signal pre-correlation is

Ps = |Rs (0)| 2

= 2Cs

∣∣∣∣∣
∫ Fs

2

− Fs
2

H ( f ) |M ( f )| 2d f

∣∣∣∣∣
2

= 2Cs

∣∣∣∣∣
∫ Fs

2

− Fs
2

H ( f ) S( f )d f

∣∣∣∣∣
2

l. (16)

For noises, pre-correlation power of noises can be
expressed

Pn =
1
T

∫ T/2

−T/2
(R (τ))2dτ. (17)

According to Parseval’s theorem [19] and cross-
correlation theorem:

Pw =
1
T

∫ T/2

−T/2
(R (τ))2dτ

=
1
T

∫ Fs
2

− Fs
2

|F (R (τ))| 2d f

=
1
T

∫ Fs
2

− Fs
2

|H ( f )W ( f ) M( f )| 2d f . (18)

It is possible to rewrite |W( f )|2 as N0 + CiSi( f ),
where N0 is the white noise power density, Ci is the
interference power and Si( f ) is the normalized power
spectrum of interference.

From (16) and (18), pre-correlation signal to noise

ratio is:

SNR =

2TCs
N0

∣∣∣∣∣∣
Fs
2∫
− Fs

2

H ( f ) S( f )d f

∣∣∣∣∣∣
2

Fs
2∫
− Fs

2

|H ( f )| 2S( f )d f + Ci
N0

Fs
2∫
− Fs

2

|H ( f )| 2S ( f ) Si( f )d f

.

(19)

According to [18], the C/N0 ratio can be calculated
as:

C
N0

=
SNR

T
, (20)

where T is the correlator’s integration time.
Thus, applying (19) and (20), we have

C
N0

=

2Cs
N0

∣∣∣∣∣∣
Fs
2∫
− Fs

2

H ( f ) S ( f ) d f

∣∣∣∣∣∣
2

Fs
2∫
− Fs

2

|H ( f )| 2S ( f ) d f + Ci
N0

Fs
2∫
− Fs

2

|H ( f )| 2S ( f ) Si ( f ) d f

.

(21)

Assume that the interference spectrum is concen-
trated in the range [ fint − Bint

2 ; fint +
Bint

2 ], where Bint is
the bandwidth of interference and fint is the interfer-
ence frequency. Since the signal spectrum is symmetric,
(21) can be rewritten as:

C
N0

=

Cs
N0

∣∣∣∣∣∣
Fs
2∫

0
H( f )S( f )d f

∣∣∣∣∣∣
2

Fs
2∫

0
|H( f )| 2S( f )d f + Ci

N0

fint+
Bint

2∫
fint−

Bint
2

|H( f )| 2S( f )d f

.

(22)
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