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Abstract– Approximately 3 dB Signal-to-Noise Ratio (SNR) loss is always paid with conventional Differential Spatial
Modulation (DSM) as compared to coherent Spatial Modulation (SM). In this paper, a Multiple-Symbol Differential Detection
(MSDD) technique is proposed for DSM systems to mitigate the loss due to differential detection. The new scheme can
greatly narrow the 3 dB performance gap by extending the observation interval for differential decoding. The technique
uses maximum-likelihood sequence detection instead of traditional symbol-by-symbol detection, and is carried out on the
slow, flat Rayleigh fading channel. A generalized decision metric is derived for an observation interval of arbitrary length.
It is shown that for a moderate number of symbols, MSDD provides approximately 1.5 dB performance improvement
over the conventional differential detection. In addition, a closed-form pairwise error probability and approximate bit
error probability (BEP) are derived for multiple-symbol differential spatial modulation. Results show that the theoretical
BEP matches well the simulated one. The BEP is shown to converge asymptotically with the number of symbols in the
observation interval to that of the differential scheme with coherent detection.

Keywords– MIMO, Differential Spatial Modulation, Multiple-Symbol differential detection (MSDD), decision metric,
pairwise error probability (PEP).

1 Introduction

In the past few years, SM [1–5] and SSK [6] have been
receiving increasing research interest. The key idea of
SM is to activate one among nT transmit antennas for
data transmission at a given symbol instant. By exploit-
ing the difference in the channel impulse responses of
transmit-to-receive wireless links, this arrangement en-
ables the use of the transmit antenna index as an infor-
mation carrying means, in addition to the transmitted
symbol chosen from a constellation diagram. Conse-
quently, the entire spectral efficiency can be increased
by the base-two logarithm of the number of transmit
antennas [2]. The so-called SSK scheme can be seen
as a special case of SM, where the transmitted symbol
is always the same, and the antenna index is the only
information carrying unit. Compared to other Multiple
Input Multiple Output (MIMO) techniques, such as
the Vertical Bell Laboratories Layered Space-Time (V-
BLAST) [7] and Space-Time Block Codes (STBCs) [8, 9],
SM and SSK have several appealing characteristics,
which are brought about by the following two key
features: 1) only one antenna remains active during
transmission and 2) the spatial position (i.e., the index)
of each transmit antenna in the antenna array is used
to convey information. Unlike V-BLAST, in which joint
detection is required to mitigate the effect of Inter-
Channel Interference (ICI) in order to achieve a high
multiplexing gain, SM and SSK can entirely avoid ICI,
thus allowing low-complexity single-stream detectors
to be implemented at the receiver. Unlike STBCs, which
were developed to attain the maximum diversity order,

SM and SSK can introduce a multiplexing gain that
increases logarithmically with the number of transmit
antennas. Furthermore, SM and SSK do not require the
Inter-Antenna Synchronization (IAS) to be as strict as
V-BLAST and STBCs do. As a consequence, it has been
concluded in [2, 3] and [6] that SM/SSK is a promising
MIMO technique that has the potential to outperform
conventional MIMO techniques.

Until now, most investigations of SM/SSK have as-
sumed that perfect channel state information is avail-
able at the receiver. This assumption is reasonable
when the channel changes slowly in comparison with
the symbol transmission rate, whereas in high-mobility
situations, the above assumption is questionable. In
such situations, the channel changes rapidly, and hence
it is costly and difficult to obtain exact channel state
information. Therefore, a very popular and widely
accepted way to deal with the system design for high
mobility scenarios is to avoid the need of the channel
state information by using differential signaling. The
differential concept has been widely used in the de-
sign of many technologies for high rate systems. As
mentioned in [10], the differential concept has been
successfully implemented in MIMO, e.g., the differ-
ential Alamouti scheme [11] and differential spatial
multiplexing [12]. However, it has not been used with
the SM/SSK technology. This is because, unlike other
MIMO technologies, the channel in SM/SSK systems
actually acts as a modulation unit, which makes the
design of differential SM/SSK unique and difficult.
Recently, in [13], a differential transmission scheme
has been proposed for Space-Time Shift Keying system
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where, as addressed by the authors, the concept of
SM/SSK is extended to include both the space and time
dimensions. However, in this scheme multiple transmit
antennas remain active at each symbol duration. This
means that the scheme in [13] does not treat the channel
as the actual modulation unit. As clearly mentioned
in [10], properly designing differential SM/SSK re-
mains a big challenge and is still an open issue. Very
recently, the authors in [14] have proposed a differential
scheme for SM, called Differential SM (DSM), which
can be applied to any equal energy signal constella-
tions. The developed DSM retains the key feature of
SM in that only one antenna is active at any symbol
instant. Therefore, ICI is avoided and the requirement
of IAS is relaxed. However, similar to other differential
schemes, a loss of approximately 3 dB in the SNR is
always observed in this differential scheme.

The MSDD was first introduced for additive white
Gaussian noise (AWGN) channels by Divsalar and Si-
mon [15]. By extending the observation interval to more
than two symbols, the technique makes use of Max-
imum Likelihood (ML) sequence detection instead of
symbol-by-symbol detection, as in the conventional dif-
ferential detection. The performance of MSDD depends
on the number of observed symbols. For a moderate
number of symbols, MSDD bridges the performance
gap between noncoherent and coherent communica-
tions. In [16] and [17], MSDD was applied to the flat
Rayleigh fading channel. Motivated by MSDD, the ob-
servation interval of the differential Alamouti STBC is
extended to three blocks [18]. As a result, a performance
improvement of about 0.5 dB for binary phase-shift
keying (BPSK) messages was demonstrated. In [19],
the MSDD scheme for space-time blocks incorporates
knowledge of the fading correlation.

In this paper, we generalize the differential SM to
a larger number of observation intervals. The decision
metric for a sequence of L observed blocks is derived.
It is shown that for an observation interval of L = 8
blocks, there is a gain of about 1.5 dB over differential
SM with two blocks.

The remaining of the paper is organized as follows.
We briefly overview the principle of DSM in Section 2.
In Section 3, the generalized decision metric is derived
for DSM with an observation interval of L blocks over
the slow Rayleigh fading channel. It is shown that
special case L = 2 coincides with the results in [14].
In Section 4, the closed-form pairwise error proba-
bility (PEP) is derived, and an approximate bit-error
probability (BEP) for this scheme is analyzed. Finally,
conclusions are drawn in Section 5.

Notations: Throughout the paper we use the following
mathematical notations. The bold small/capital letter
denotes vector/matrix, respectively. (·)H is used for
Hermitian operation while ‖·‖F for the Frobenius norm
of a vector or matrix. E [∆] and Var [∆] denote the
statistical expectation and variance of ∆, respectively.
trace [·] represents the trace function and diag {·} cre-
ates a diagonal matrix whose diagonal entries taken
values from {·}. det Λ is determinant of Λ matrix. We
use Re [a] for the real part of the complex number a.

2 DSM System Model

We consider a MIMO communication system equipped
with nT transmit antennas and nR receive antennas. In
order to avoid the need for channel state information
at the receiver, Yuyang Bian et al. proposed a DSM
scheme for the case of two transmitter antennas [14]. In
DSM, the transmitted signal vectors over two adjacent
time intervals are collected into an nT × T transmitted
signal matrix St, where nT = 2 and T = 2. Let Ht
be the nR × nT fading matrix with the (i, j)-th entry,
hi,j, denoting the normalized complex fading gain from
transmit antenna j to receive antenna i. The received
signal at time intervals t can be expressed as

Yt = HtSt + Nt, (1)

where Yt is the nR × T received signal matrix and Nt
is the nR × T AWGN matrix. The entries of Ht are
assumed to be independent and identically distributed
(i.i.d.) complex Gaussian random variables with zero
mean and unit variance, whereas those of Nt are as-
sumed to be i.i.d. complex Gaussian random variables
with zero mean and variance of N0.

The transmitted signal matrix St satisfies the condi-
tion that each transmit antenna is activated only once.
Hence, St can be a diagonal or anti-diagonal matrix.
Furthermore, to enable differential transmission, the
signal constellation is restricted to an equal energy
constellation, i.e. M0-PSK, in particular.

The transmission signal space ΩDSM of DSM is
given by

ΩDSM =

{[
s1 0
0 s2

]
,
[

0 s1
s2 0

]
|s1, s2 ∈ A

}
, (2)

where A is the M0-PSK constellation. The element[
s1 0
0 s2

]
decides that at time interval 1, the symbol s1

chosen from A is transmitted over the transmit an-
tenna 1 meanwhile the transmit antenna 2 remains
idle. And at time interval 2, the symbol s2 chosen
from A is transmitted by the antenna 2 meanwhile the
transmit antenna 1 remains idle. The matrix

[
0 s1
s2 0

]
is

also interpreted in a similar way.
Because of using the transmission signal space ΩDSM

formed by M0-PSK constellation, we can map log2M0
bits to the first symbol s1, another log2M0 bits to the
second symbol s2, and the left 1 bit to the active index
of the transmit antennas. The spectral efficiency of DSM
can be achieved as

ηDSM(nT=2) = 0.5 + log2M0 bpcu. (3)

The block diagram of the DSM transmitter is given
in Figure 1. The transmitter begins the differential
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Figure 1. Block diagram of differential SM transmitter.
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Figure 2. Block diagram of multiple-symbol differential SM receiver.

transmission process by sending an arbitrary matrix
S0 ∈ ΩDSM which may be unknown at the receiver.
Note that this transmitted signal matrix does not con-
vey any information. The encoding words are created
as follows. At time interval 2t + 2, map a group of
2b + 1 = 2log2M0 + 1 bits into a codeword matrix
Xt+1 ∈ ΩDSM. Compute the actual transmitted signal
matrix St+1 as

St+1 = StXt+1. (4)

The transmitted signal matrix St+1 is sent at time
intervals 2t+ 2 and 2t+ 3. This process is repeated until
the end of the transmission.

At the receiver side, the received matrix at time
intervals 2t + 2 and 2t + 3 is given by

Yt+1 = Ht+1St+1 + Nt+1

= Ht+1StXt+1 + Nt+1

= YtXt+1 −NtXt+1 + Nt+1. (5)

To get the transmitted information bits, we need to
estimate Xt+1. The optimal ML detector can be derived
as

X̂t+1 = arg min
X∈ΩDSM

‖Yt+1 − YtX‖2
F

= arg max trace
X∈ΩDSM

{Re(Yt+1
HYtX)}. (6)

According to (6), the block diagram of the receiver
is designed as shown in Figure 2, where L = 2 corre-
sponds to the case of the conventional DSM detection.

3 Proposed MSDD for DSM System

Consider a DSM system in which the transmitter is pre-
sented in Figure 1. In order to estimate the transmitted
DSM symbols, we have presented the principle of the
DSM receiver using the ML detection as given in (6).
In this section, we propose a new DSM receiver using
MSDD. The configuration of the proposed receiver is
shown in Figure 2. Different from the conventional
DSM detection, the MSDD receiver extends the obser-
vation interval to L > 2 blocks. In the proposed receiver,
for M0-PSK modulation, the receiver needs to compute
and compare 2M2(L−1)

0 decision metrics as illustrated
in Figure 2. These metrics will be derived as follows.
Assume that the channel stays constant during the

observation interval. Then the received signal sequence
can be expressed as

Y = HS + N, (7)

where
Y = [Yt, Yt−1, . . . , Yt−L+1]
S = diag {St, St−1, . . . St−L+1}
H = [Ht, Ht−1, . . . , Ht−L+1]
N = [Nt, Nt−1, . . . , Nt−L+1] .

The matrices Y, H and N are of size 2× 2L and S of
sizze 2L× 2L. For convenience, we also define a 2L× 2L
matrix X = diag {Xt, Xt−1, . . . Xt−L+1}.

Consider the channel H is fixed over some time
interval. For a block of L observations, conditioned
on S, the received matrix Y is a zero-mean Gaussian-
distributed matrix. Its conditional pdf (probability den-
sity function) is

p (Y|S) = 1

(π)4L det Λ
exp

{
−trace

(
YHΛ−1Y

)}
, (8)

where Λ is the covariance matrix of Y and is given by
Λ = E

{
YYH |S

}
. Since path gains are assumed constant

during a frame, Hi = Hj for all i 6= j, we have

Λ = E [(HS + N) (HS + N)H ]

= E
[
SHHHSH + NNH

]
= S (InT ⊗ 1L) SH + N0I2L, (9)

where 1L denotes an L × L matrix with all elements
equal to one, and ⊗ represents the Kronecker product.

Using the unitary property of the matrix S, it can
be shown that det Λ is independent of the messages
Xt, Xt−1, . . . , Xt−L+1.

Let us define V, Z and X as

V = N0I2L,
Z = S (I2 ⊗ 1L×1) ,
D = (I2 ⊗ 1L×1)

HSH .
(10)

Then (9) can be expressed as Λ = ZI2LD + V. Using
the matrix inversion lemma [20]

(V + ZI2LD)−1 = V−1 −V−1Z
(

I−1
2L + DV−1Z

)
DV−1,

(11)

and (9) yields

Λ−1 =
1

N0
I2L −

1
N0 (1 + N0)

S (I2 ⊗ 1L) SH . (12)
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Since the natural logarithm is a monotonically in-
creasing function of its argument, maximizing p (Y|X)
qua X in (8) is equivalent to maximizing ln p (Y|X).
Choosing the sequence X to maximize (8) results in the
decision metric

ξ̂ = trace
[
− ln (det Λ)−

(
YHΛ−1Y

)]
= trace[− ln (det Λ)− 1

N0
YHY

+
1

N0 (1 + N0)
YH
(

S (I2 ⊗ 1L) SH
)

Y]. (13)

As det Λ, YHY, N0 are independent of transmitted
messages, they can be ignored. Then the decision metric
becomes

ξ̃ = trace
[
YHS (I2 ⊗ 1L) SHY

]
. (14)

Expanding (14), the metric can be expressed as

ξ̃ = trace

[
L−1

∑
i=0

L−1

∑
j=0

YH
t−iSt−iSH

t−jYt−j

]

= K + 2× trace

{
Re

(
L−1

∑
i=1

i−1

∑
j=0

YH
t−iSt−iSH

t−jYt−j

)}
,

(15)

where

K = trace

[
L

∑
i=0

YH
t−iSt−iSH

t−jYt−j

]
, (16)

Due to the unitary property of St−i, K is independent
of the transmitted symbol sequence. Thus the decision
metric becomes

ξ = trace

[
Re

(
L−1

∑
i=1

i−1

∑
j=0

YH
t−iSt−iSH

t−jYt−j

)]
. (17)

Using the identity for the trace function [20], we have

ξ = trace

{
Re

[
L−1

∑
i=1

i−1

∑
j=0

Yt−jYH
t−iSt−iSH

t−j

]}

= trace

{
Re

[
L−1

∑
i=1

i−1

∑
j=0

Yt−jYH
t−i
(
Xt−j . . . Xt−i+1

)H
]}

.

(18)

The differentially encoded message X̂ can be detected
from

X̂ = arg max
C

trace{
Re

[
L−1

∑
i=1

i−1

∑
j=0

Yt−jYH
t−i
(
Xt−jXt−j−1 . . . Xt−i+1

)H
]}

.

(19)

This is the MSDD decision metric for an observation
interval of L blocks. The complexity of the MSDD
receiver increases exponentially with the length of the
observation interval.

Next, we discuss the special cases of L = 2 and L = 3.

1) L = 2: The detected message in (19) becomes

X̂t = arg max
X

trace
[
Re
(

YtYH
t−1XH

t

)]
. (20)

2) L = 3: We can detect Xt, Xt−1 by[
X̂tX̂t−1

]
= arg max

C
trace

{
Re
[
YtYH

t−1XH
t

+Yt−1YH
t−2XH

t−1 + YtYH
t−2(XtXt−1)

H
]}

.
(21)

4 Theoretical Upper Bound of The BEP

Suppose that the message Xt is sent at each block. Since
errors occur during transmission of the actual transmit-
ted signal matrix St due to channel fading and noise, af-
ter differential decoding, assume that the message Et in
each block is detected. It follows that EtEH

t = InT , where
InT is the nT × nT identity matrix. In order to measure
the difference between Xt and Et, we define Dt = EtXH

t .
Then, the matrix distance between Xt and Et can be
expressed as trace {Re (InT −Dt)}. When no error oc-
curs, Dt = InT , and thus trace {Re (InT −Dt)} = 0.
Since DtDH

t = InT , matrix Dt has the same orthogonal
property as the message matrix Xt and the actual
transmitted signal matrix St.

Recall that the DSM transmitter transmits the ma-
trices St, St−1, . . . , St−L+1 instead of directly trans-
mitting the message matrices Xt, Xt−1, . . . , Xt−L+2.
Due to the influence of fading and noise, sup-
pose that while St, St−1, . . . , St−L+1 are transmit-
ted, Qt, Qt−1, . . . , Qt−L+1 are actually received which
causes that the differentially decoded message matrices
Xt, Xt−1, . . . , Xt−L+2 to become the error message ma-
trices Et, Et−1, . . . , Et−L+2. Obviously, Qt = EtQt−1 =
Et, Et−1, . . . , Et−L+2St−L+1 and QtQH

t−1 = Et.
Let ηc and ηe be the decision variables for trans-

mission matrices X and E, respectively. Besides, let
Pr (X→ E|X, H) be the pairwise error probability of de-
ciding E when X is transmitted for a given channel re-
alization H. Then, Pr (X→ E|X, H) can be expressed as

Pr (X→ E|X, H)

= P [(ξe − ξc) > 0|X, H]

= P

([
L−1

∑
i=1

i−1

∑
j=0

trace
{

Re
(
Φt−i,t−j

)}]
> 0|X, H

)
,

(22)

where

ηc = trace

{
Re

[
L−1

∑
i=1

i−1

∑
j=0

Yt−jYH
t−iSt−iSH

t−j

]}
, (23)

ηe = trace

{
Re

[
L−1

∑
i=1

i−1

∑
j=0

Yt−jYH
t−iQt−iQH

t−j

]}
, (24)

Φt−i,t−j = Yt−jYH
t−iQt−iQH

t−j − Yt−jYH
t−iSt−iSH

t−j. (25)
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By using (23), (24) and (25), we have

trace
{

Re
(
Φt−i,t−j

)}
'

trace
{

Re
(

Ht−iHH
t−j
(
Dt−jDt−j−1 . . . Dt−i+1 − InT

))}
+trace

{
Re
(

St−jHt−jNH
t−iQt−iQH

t−j

+Nt−jHH
t−iS

H
t−iQt−iQH

t−j
−St−jHt−jNH

t−iSt−iSH
j

−Nt−jHH
t−iS

H
t−iSt−iSH

t−j

)}
.

(26)

Note that the second-order noise terms in (26) are
ignored since they are quite small compared to other
noise terms when SNR is large enough. Let

∆ =
L−1

∑
i=1

i−1

∑
j=0

trace
{

Re
(
Φt−i,t−j

)}
= −

(
|h1|2 + |h2|2 + · · ·+ |hnT |

2
)

ρ + trace {Re (Θ)} ,
(27)

where

ρ = trace{
Re

[
L−1

∑
i=1

i−1

∑
j=0

(
InT −Dt−jDt−j−1 . . . Dt−i+1

)]}
,

(28)

and

Θ =
L−1

∑
i=1

i−1

∑
j=0

{
St−jHt−jNH

t−iQt−iQH
t−j

+ Nt−jHH
t−iC

H
t−iQt−iQH

t−j

− St−jHt−jNH
t−iSt−iSH

t−j

−Nt−jHH
t−iS

H
t−iSt−iSH

t−j

}
. (29)

By substituting (26) and (27) into (22), we have

Pr (X→ E|X, H) = Pr (ηe − ηc > 0|X, H)

= Pr (∆ > 0|X, H) . (30)

For given transmission matrices X and E,
Qt, Qt−1, . . . , Qt−L+1, St, St−1, . . . , St−L+1 and ρ can be
considered as deterministic quantities. Therefore, we
can easily show that E [trace {Re (Θ)}] = 0. Taking the
expectation of both sides of (27) yields

E [∆] =−
(
|h1|2 + |h2|2 + · · ·+ |hnT |

2
)

E [ρ]

+ E [trace {Re (Θ)}] (31)

=−
(
|h1|2 + |h2|2 + · · ·+ |hnT |

2
)

ρ. (32)

The computation of the variance of ∆ is more com-
plicated, because some terms in (29) are correlated
although most of the terms are assumed to be mutually
independent. Define

Θ1 =
L−1
∑

i=1

i−1
∑

j=0

{
St−jHt−jNH

t−iQt−iQH
t−j

+Nt−jHH
t−iC

H
t−iQt−iQH

t−j

}
,

(33)

Θ2 =
L−1
∑

i=1

i−1
∑

j=0

{
St−jHt−jNH

t−iSt−iSH
t−j

+Nt−jHH
t−iC

H
t−iSt−iSH

t−j

}
.

(34)

The variance of trace {Re [Θ]} consists of three
parts: the variance of trace {Re [Θ1]}, the variance
of trace {Re [Θ2]}, and the cross-correlation between
trace {Re [Θ1]} and trace {Re [Θ2]}.

The variance of ∆ can be obtained as

Var [∆]
= Var [trace {Re (Θ)}]

= 4L (L− 1)
(
|h1|2 + |h2|2 + · · ·+ |hnT |

2
)

N0

+ 2 (L− 2) N0

(
|h1|2 + |h2|2 + · · ·+ |hnT |

2
)

trace

{
Re

[
L−1

∑
i=0

i−1

∑
j=0

(
Dt−jDt−j−1 . . . Dt−i+1 + I2

)]}
− 4 (L− 1) N0

(
|h1|2 + |h2|2 + · · ·+ |hnT |

2
)

trace

{
Re

[
L−1

∑
i=0

i−1

∑
j=0

(
Dt−jDt−j−1 . . . Dt−i+1

)]}
, (35)

which can be simplified as

Var [∆] = 2Lρ
(
|h1|2 + |h2|2 + · · ·+ |hnT |

2
)

N0. (36)

From (30), (31), and (36), we have

Pr (X→ E|X, H)

= Pr (∆ > 0|X, H)

= Q

(√
γρ
(
|h1|2 + |h2|2 + · · ·+ |hnT |

2
)

/2L

)
,

(37)

where Q denotes the Gaussian tail function, and γ =
Es/N0 is the SNR per symbol. By defining the instan-
taneous SNR as follows:

γb = γ
nT

∑
l=1
|hl |2, (38)

and using the alternative form of the Gaussian Q-
function [21], we can write

Pr (X→ E|X, H) = Q
(√

(ρ/2L) γb

)

=
1
π

π/2∫
0

exp
(
− (ρ/2L) γb

2sin2Θ

)
dΘ. (39)

Averaging (39) over all realizations of the channel
matrix H gives us the PEP

Pr (X→ E|X) =
∞∫

0

Q
(√

(ρ/2L) γb

)
p (γb) dγb, (40)

where p (γb) =
1

(D−1)!γD γD−1
b e−

γb
γ is the pdf of γb and

D is the number of diversity channels [22].
Let u represent a sequence with q information bits

and û denotes an error sequence with the same number
of information bits. The probability of error Pb of the
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Figure 3. BER versus SNR for different lengths of observation
interval for DSM system at 2.5 bpcu, (nT , nR) = (2, 2).

proposed detection method for DSM system is union-
bounded by [23, 24]:

Pb ≤
1
2q ∑

X 6=E
Pr (X→ E|X) · w (u, û), (41)

where w (u, û) is the Hamming distance between se-
quences u and û. The PEP Pr (X→ E|X) is given
by (40).

5 Performance Evaluations

In this section, Monte Carlo simulations and the the-
oretical upper bound are used to study the BER per-
formance of the proposed detection method for DSM
system. Simulations are carried out over the slow, flat
Rayleigh fading channel. The channel is assumed to be
constant during the observation interval, but changes
independently from interval to interval. The channel
state information is assumed unavailable at the receiver,
and ML sequence detection is applied to all systems
under consideration.

Using the decision statistic in (19), the DSM receiver
can detect blocks of differentially encoded signals by
observing over intervals of different lengths. Figure 3
shows the BER performance curves of DSM at spectral
efficiency of 2.5 bpcu using QPSK signal constellation
and various observation intervals. Figure 3 also com-
pares the BER performance of the DSM scheme and
the coherent SM scheme under the same modulation
order. The simulations are performed with nT = 2,
nR = 2. The curve for L = 2 corresponds to the DSM
scheme suggested in [14] and [25]. Indeed, this curve
of DSM matches well with the results in the reference
and the performance degradation of DSM over SM is
closer to 3 dB. Notice from the figure that when the
observation interval is increased, the BER performance
of MSDD approaches closer to that of the coherent
detection. Specifically, when L = 8 the proposed MSDD
achieves the same BER performance as that of the
coherent detection. However, it is worth noting that for
the same signal constellation, the spectral efficiencies
of SM and DSM are not the same. For the considered
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Figure 4. Analysis and simulation results for MSDD of DSM at 2.5
bpcu.

case of QPSK the spectral efficiency of DSM is 2.5 bpcu
while that of SM is 3 bpcu. It is noted again from (19)
that the computational complexity of MSDD increases
exponentially with L. Therefore, a careful selection of
the observation interval L will help to balance the
performance improvement with additional complexity.

In Figure 4, the derived theoretical upper bounds for
the DSM BEP is validated by simulation results for two
arbitrary cases of L = 2 and L = 6. It can be seen that
the upper bounds fit well with the simulation curves,
particularly at high SNR. Therefore, this tight upper
bound can be used for evaluating the performance of
DSM in the high SNR region.

6 Conclusion

A multiple-symbol differential detector is proposed
for differential spatial modulation, where neither the
transmitters nor the receivers know the channel state
information. A generalized decision metric for an ob-
servation interval of L blocks is derived. In addition,
a theoretical upper bound for the bit error probability
for the DSM system that utilizes the proposed detector
is provided. It is shown that the upper bounds fit
well with the simulation results, particularly in the
high SNR region. It is also demonstrated by computer
simulation that the MSDD allows the DSM system to
improve its BER performance. The longer observation
interval is used, the larger performance improvement
is achieved. The penalty is, however, that detection
complexity grows exponentially with the observation
interval.
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